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Contemporary Mathematics
Volume 00, 19xx

Oriented Matroid Pairs, Theory and an Electric Application

Seth Chaiken

ABSTRACT. The property that a pair of oriented matroids Mi‘, Mg on E have
free union and no common (non-zero) covector generalizes oriented matroid
duality. This property characterizes when certain systems of equations whose
only nonlinearities occur as real monotone bijections have a unique solution
for all values of additive parameters. Instances include sign non-singularity of
square matrices and generalizations of positive definiteness given by Fiedler
and Ptak. Other instances of this property include various kinds of character-
izations of when an electric network problem is well-posed. Such characteriza-
tions have been given in terms of matrix pairs by Sandberg and Willson and
in terms of electrical network graphs by Duffin, Minty, Hasler and Neirnyck,
and by Nishi and Chua.

Cases of the general common covector problem are classified. Natural
matroid rank conditions are sufficient for a common covector to exist. An
algorithm to construct a common covector by composing certain fundamental
cocircuits is given. If M; and Mpz have two common bases with opposite
relative orientation (chirotope value) then Mi‘, M g have a common covector.
This abstracts the realizable case of a determinant expansion having terms
of opposite sign. An open problem is whether Mi‘, Mg having a common
covector implies that M; and Mpg have two common bases with opposite
relative orientation, when the latter have one common basis and are not real-
izable. A weaker conjecture is Mi‘, Mg have a common covector if and only
if Mi‘, Mg have a common vector, when M and Mg have a common basis.

The computational complexity of the problem “Do Mi‘, Mg have a com-
mon covector?” when M and Mg have a common basis is at least as high
as telling if a square matrix is not sign solvable or if a digraph has an even
directed circuit. When rank(Mi‘) + rank(M ) < |E| the problem is strongly
NP-complete and it generalizes non L-matrix sign pattern detection.

Introduction

The theory begins with the definition of an elementary property of a pair of real
linear subspaces, say the row spaces of two real matrices. The signature function
o :RF — {0, +, —}¥ maps each real tuple into the pattern of its signs.
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DeFINITION 0.1. Two linear subspaces L1 and Ly of RF for finite set E have
a common covector if there exist # € Ly and y € Ly for which o(z) = o(y) # 0.

This definition of common covectors for realized oriented matroid pairs natu-
rally generalizes. The covector set of an oriented matriod is denoted by £. The
dual of an oriented matroid M is denoted by M™. See [1] for an exposition of
oriented matroids that emphasizes how the matroid dual abstracts the orthogonal
complement of a real linear space.

DEFINITION 0.2. A pair of oriented matroids M7, Mg on the same ground
set £ have a common covector X if X € L(M$) N L(Mg) and X # 0.

Orthogonal pairs of subspaces, and, more generally, dual pairs of oriented ma-
troids, never have common covectors.

The Electric Network Model. This section distills material from [11, 12,
18, 21, 26, 29, 30, 34]. A finite, lumped analog DC electric network model is
a set of devices and a network graph which represents their interconnection. The
graph nodes model maximally connected electrically conducting regions typically
comprised of physically connected metal wires. Some graph edges correspond to
idealized two terminal electrical devices such as voltage sources (batteries), resistors,
diodes, etc. Each terminal is identified with a node. Every two terminal device will
be identified with its edge. Other devices such as transistors, ideal operational
amplifiers, and other kinds of controlled sources have three or more terminals. For
each device, the model has some edges between some pairs of that device’s terminals.
See [12, Ch. 13].

The usual schematic diagram of such a network uses solid lines for the wires,
dots for wire junctions and standard symbols for the devices. See parts (a-c) of
Figure 1 and Figure 4 for examples. The edges for devices with three or more
terminals are usually omitted. One node is often distinguished as the “ground.”
The ground node is understood to be connected by wires between multiple ground
symbols in addition to the explicit wire lines.

Let F be the set of network graph edges. The matroids that motivate our
subject all have ground sets that are either subsets of F or subsets of disjoint
unions of copies of E. Many are graphic or cographic.

The electric network model determines a set of real equations on 2| E| variables:
Variable v, for e € F represents the potential difference or wvoltage between the
endpoints of e, and i, represents the rate of charge flow or current through edge e.
Flow is conserved at nodes. The equations fall into two classes: the structural laws
(Kirchhoff’s laws) and the constitutive laws (the device characteristics). Kirchhoff’s
voltage law (KVL) says vg = (v.,e € F) is in the cocycle space of the network
graph. Kirchhoff’s current law (KCL) says (i.,e € F) belongs to the cycle space.
See [21, 29, 30]. The fact that these spaces are orthogonal is known in the electric
circuit theory literature as Tellegen’s theorem.

The constitutive law for a voltage source edge e (i.e., an ideal battery) is v
equals a constant. For current source edge e, ¢, equals a constant. These constants
are considered independent “input signals” to the system. They will generally be
parameters. Notice that when, say, e is a voltage source, the current i, is an
unknown variable.

The constitutive law for a positive, linear resistor edge e is called Ohm’s law:
Ve = Tel., where constant r. > 0 is called the resistance (of €). The reciprocal
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ge = 1! is called the conductance. For a diode the law is i, = D(v.)— D(0) where
D : R — R7T is exponential. For a more realistic model with reverse breakdown,
this current function would be onto R but still monotonic. An ideal operational
amplifier device has 4 terminals and two disjoint edges, say e and f. The output
edge f is incident to the ground. The constitutive law is v, = 0 and ¢, = 0. This
law is the limit, as A goes to infinity and vy is bounded, of the more realistic (DC)
law ¢, = 0 and v; = Av.. The constant A here is called the open loop gain, which
is typically at least 10° and is over 107 in some modern commercial units [23].
Either model is a good approximation when the non-ideal operational amplifier
has sufficiently large gain, the system is stable (as a dynamic system stabilized by
feedback), and the voltages and currents of the amplifier are within the ranges for
“active operation.” See [12, Ch. 9 and 11].

DEeFINITION 0.3. The network model is called well-posed when for all real val-
ues for the input signal parameters, the equations (in the voltage and current vari-
ables) have a unique solution. Otherwise it is ill-posed.

The linear or non-linear constitutive laws for many devices other than the
(constant) sources are generally known only approximately. The central motivating
question for this paper 1s what combinatorial properties of the network graph can
distinguish three possibilities: (1) the network model is well-posed for every choice
of continuous, monotone increasing constitutive law functions; (2) the model is
well-posed for some and ill-posed for other choices of such constitutive laws; (3)
the model is ill-posed for all such choices. In this paper, we will relate the answer
to this question given by [18, 19, 20, 12, Ch. 31] and work cited below to results
about the common covector problem for oriented matroid pairs. For example, the
uniqueness proofs given when the constitutive laws for two terminal devices are
monotone cite Tellegen’s theorem. However, they only use the its consequence that
the network graph’s cycle and cocycle spaces over R¥ have no common covector.

We analyze the voltage divider in part (a) of Figure 1 for an example. Let us
eliminate the current and voltage variables for the voltage source V. Kirchhofl’s
laws constrain the rest of the voltages v = (v.,v;) and currents ¢ = (i., 1) to affine
lines in R?. The equations below show representative homogeneous coordinates in
R3 of the points on these lines as s and ¢ range over R. The corresponding R?
coordinates v and ¢ are also shown. The cocycle and cycles spaces of the 2 edge
circuit graph are denoted by Ct and C respectively. This graph is the contraction
by edge Vj of the original network graph.

e f e f
[s,1]1] 0 =1 1 |=[1,Vo—s,5] [t,1]]0 1 1 |=][L,¢,1¢
1 Vs 0 1 0 0
{fv=>Vy—s,5) : se R} {i = (t,t) : t € R} = currents
= voltages v feasible under KVL. (flows) ¢ feasible under KCL.
ve 40t i€i®+C

Ohm’s law for this problem is

. fre 0
v_zR_z<0 rf)'

To prove that a solution is unique, let év = v — v’ and 67 = ¢ — i’ for two solutions

(v;i), (v';i'). Then év € C, 6i € Ct and év = ¥R —iR. If év and 67 are not
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{1,2} 1 2

Ficure 1. Examples of electrical network models with unique so-
lutions because the oriented matroids coding feasible current and
voltage sign patterns have no common covector. Edges V, are volt-
age sources with value V5. Part (a) is a classical voltage divider.
Part (b) is the schematic of a feedback system with an ideal oper-
ational amplifier. Part (¢) shows that device with its edges. The
nullator edge h = (1,2) and the norator edge k = (0, 3) are ideal
two-terminal devices that signify the constitutive law for the am-
plifier. Part (d) is the network graph drawn as in graph theory
books. Suppose the amplifier’s constitutive laws are used to elim-
inate v, and ¢, for both n = (1,2) and n = (0, 3). The remaining
voltages are constrained by KVL to the cocycle space C‘J; of the
“voltage graph” shown in part (e). The remaining currents are
constrained to the cycle space Cr of the “current graph” of part
(f). [11, 26]

both zero, then o(6v) # o(éi) since C and Ct have no common covector. However
o(bv) = o(é%) since the resistance values (entries in diagonal matrix R) are positive.
The same argument would apply for nonlinear resistance functions v, = r.(i.) that
are strictly monotone increasing. The oriented matroids with no common covector
are realized by matrices M+ = [~1 1] (whose row space is C1) and Mg = [1 1]
(whose row space is C.)

A network model as in part (b) of Figure 1 with an ideal operational amplifier
can be expressed by a network model as in parts (c-d) of Figure 1 with two kinds
of special device edges in addition to resistor, voltage sources and current sources:
nullators and norators. Kirchhoff’s laws constrain the voltage drops and currents
to the cocycle and cycle spaces of this graph as before. However, a nullator edge
h represents the further constraint that its current ¢; is 0 and its voltage v, is 0.
Edge k is called a norator to indicate that it conducts current but is not subject to
any constitutive law constraint directly.

Let us analyze the network given by part (b) and equivalently by part (¢) of
Figure 1 as we did for part (a). This time, we eliminate the variables vy, i5, v and
ty, for the nullator and norator in addition to the voltage source.
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Here are the equations:

e f e f
[s,1]1]0 1 0 |=11,s, Vo] [(,1]1]0 1 1 |=][L,¢,1¢
10 W 1 00
{U = (5’ VO) .8 E R} = Voltages {Z = (t,t) 1t e R} — currents
v feasible under KVL. (flows) i feasible under KCL.
v e+ C iei'+Cr
Kirchhoff’s voltage law now constrains the remaining voltages v = (ve,vs) to

(Constant)v? + C, where Ct is the cocycle space of the voltage graph (part (e)
of Figure 1). The KCL constraint on ¢ = (i.,iy) uses the cycle space Cr of a
different graph (part (f) of Figure 1) called the current graph.

A solution for the model in parts (b-¢) of Figure 1 is unique because the non-
orthogonal row spaces C¢ and Cr of M7 = [1 0] and Mg = [1 1] respectively do not
have a common covector.

Let G be a network graph with nullators P and norators (). After eliminating
both variables for each edge in P U U, the voltages feasible under KVL are the
cocycles Cit of the voltage graph G/P\@Q. The feasible currents are the cycles C; of
the current graph G/Q\P. Such distinct graphs to represent KVL and KCL con-
straints for nullator and norator models as well as models with controlled sources
are described in [10, 26, 11, 18, 19, 34]; see also [6]. Realistic (DC) models
for multiterminal devices such as transistors can be expressed either by generally
nonlinear relations among voltages and currents of the device’s edges (called ports)
or by a network of 2-terminal devices whose edges either have (generally nonlinear)
resistance or conductance functions, or are nullators or norators. Thus a multi-
terminal device would be replaced by a subnetwork composed only of 2-terminal
devices (which are called 1-ports). Nullators and norators generalize to matroid

pairs My, Mpg:

e When e is a nullator the reduction by e is (Mg/e), (Mpr\e).
e When e is a norator the reduction by e is (Mg\e), (Mpg/e).

Related Work and Summary. The no common covector condition for unique-
ness also can be used to establish the exzistence of solutions when rank conditions are
satisfied and the nonlinear real functions are onto as well as monotone. This theme
appears in the work of Sandberg and Willson [36] (see also the survey [42]). We will
relate this theory, expressed in terms of Wy pairs of square matrices [40, 41], to ori-
ented matroids in section 4. However, similar results developed with graph theory
appear in [32] and in [18, 19, 20]. Many of the arguments given in [18, 19] ex-
tend immediately to oriented matroids because they are based on Minty’s painting
theorem and simple properties of digraphs which together can axiomatize oriented
matroids. Earlier work of Duffin [13] and Minty [28] treated only orthogonal sub-
spaces as sources for sign relationships that imply existence and uniqueness. Also
see [35].

The role of common bases in telling if an electric network model is well-posed
with generic coefficients in linear constitutive laws is apparent in [18, 19] and is
treated explicity in [29, 30, 34]. Common bases used to address solution properties
appears in [8]. Common bases and algorithms for cases of the graph theory anal-
ysis [32] are used in [27]. See also the literature on symbolic simulation [43, 12,
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Ch. 52], and the matrix tree theorem [6, 8, 7]. Ported matroid Tutte polynomi-
als [9] will be extended to oriented matroids and applied to electric problems in a
future publication.

Section 1 begins with theorems that show that natural conditions on the ranks
of two oriented matroids and their union are sufficient for them to have a common
covector. G. Ziegler mentioned [44] that such results could be proved using the
methods of [5]. However, our proofs construct the covector by elementary algo-
rithms.

The rank conditions do not apply to those cases of the linear subspace (i.e.,
realizable oriented matroid) common covector problem that are formulated to dis-
tinguish possibilities (1) from (2) among the three possibilities given after defini-
tion (0.3). Instead, in these cases, a common covector exists if and only if there
are terms of opposite sign in the Laplace expansions of certain determinants. In
section 1.1 we prove that the natural generalization of this term sign condition to
general oriented matroid chirotopes implies that common covectors exist. We leave
as an open problem the converse. A combinatorial proof of the converse might lead
to algorithms that search for “substructures” (i.e., minors) in electrical networks
and other nonlinear systems that are necessary and sufficient for non-uniqueness in
some instances of systems with a given “structure.” In the graph of a network that
includes transistors, each transistor appears as a triangle with one distinguished
edge!l. For networks with the (quite accurate) Ebers-Moll model used for transis-
tors, Nielsen and Willson applied the theory of Wy pairs of matrices to prove [31]
that all instances of networks with the same structure (i.e., network graph) have a
unique solution if and only if the graph does not have a “feedback structure” graph
minor, which is a triangle of parallel edge pairs from exactly two transistors with
the two distinguished edges in two distinct sides. (See [38, 12, Ch. 31].)

Section 2 classifies instances of the common covector problem and summarizes
the results. Properties known only for the realizable case are given in section 3.
In particular, the existence of a common covector is equivalent to the existence of
a common vector when the rank conditions do not imply either. These properties
are applied in section 4 to give an oriented matroid interpretation of the class of
Wy matrix pairs [41]: A pair (A, B) of square real matrices is in Wy if and only
if the row spaces of [A B] and [I — I] have full rank and no common covector.
We use this to derive a problem dual to the original problem given by Willson (see
Theorem 4.3) where matrix pairs of type Wy were applied.

Section 5 has some rather pessimistic facts about the computational complexity
of the common covector problem. First, when rank(M$) + rank(Mpg) < |E|, the
common covector problem (even in the realizable case) is strongly NP-complete.
Second, the case relevant to the given applications (complementary rank and free
union) includes the (complement of the) sign non-singularity (SNS) question for
square matrices of signs [3]. This problem is known to be polynomial time equiv-
alent to the even cycle problem for digraphs [22]. These problems have been rec-
ognized as deep, unsolved combinatorial problems for which it is unknown whether
they lie in complexity classes P, NP-complete or in between [22, 39].

Rigidity and Elasticity. It would be interesting to know electrical analogs of
rigidity [17] properties, or if some rigidity properties are equivalent to no common
covectors. We mention the basic analogies. Stress (a signed scalar for each bar) in

1The distinguished edge represents the emitter and collector terminal pair.
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a multidimensional bar framework is an analog of edge conductance in an electrical
network: the force vector in a bar i1s analogous to current; joint position is analogous
to absolute node potential. The fact that a non-zero stress must be positive in
some edges and negative in others is a manifestation of the fact that the (dual pair
of) graphic and cographic oriented matroids of the same graph have no common
covector. We therefore note that the electric network analysis problem “given the
conductances find the voltages” and the problem applicable to rigidity analysis
“determine what stresses a given framework can sustain” are opposite problems.

The electrical analog of an elastic “spring” network with some vertices pinned
is a network with fixed positive conductances whose only sources are voltage sources
all joined at a common node. The elastic analog of parts (b-c) of Figure 1 is easy
to visualize: A robot standing on the ground watches node 2 and pulls up on node
3 just enough to align node 2 with the top of a rod that stands Vi meters high.

Standard Theory and Terminology. Our use of standard matroid and ori-
ented matroid terminology and results generally follows [2]. Matroid union is de-
noted by V. The row space of matrix M is denoted by L(M). The sign tuples
of members of this space comprise the covectors L(M) of the oriented matroid
M(M) realized by M. The collection of wectors of oriented matroid M is denoted
by V(M). The vectors of realizable M(M) are the sign tuples of members of the
orthogonal complement of L(M).

Section 1 uses the tableau matrix notation to express fundamental cocircuits
and conditions for basis exchanges that is developed in Chapter 10 of [2]. Our
notation differs slightly as we include the current basis elements in the column set
of the tableau. A matrix decomposed horizontally into disjoint blocks A, B, etc. is
denoted by [A B ---].

1. Common Covector Existence Theorems

The first theorem is used for the others. Its proof contains an algorithm to
construct a common covector efficiently by composing covectors with cocircuits.

THEOREM 1.1. Let My and My be oriented matroids on the ground set A U
Z U S U R. Assume the covectors Cy € L(My) and Dy € L(Ma) satisfy the

properties:

1. A#£ 0 and Cy(a) = Do(a) £ 0 for all a € A,
2. SUZ is independent in My and Cy(SWUZ) =0, and
3. RUZ is independent in My and Dy(R\JZ) = 0.

Then My, My have a common (non-zero) covector C' € L(My) N L(M>) that is
compatible with both Cy and Dy. In other words, Cy < C' and Dy < C.

ProOF. There exist sets of fundamental cocircuits {c, : e € S} and {d. : e €
R} and one covector Cy and Dy in each of My and My as described by the two
tableaux in Figure 2. Observe c¢.(S\e) = 0, d.(R\e) = 0, and ¢.(7) = d.(7) = 0.
The assertions marked “//” in the algorithm can be verified by induction.
Input: Covector Cy of My, a covector Dy of My, a cocircuit ¢, of My for each
e € 5, and a cocircuit d. of My for each e € R as described.
Output: Common covector C' = D of M; and Ms.
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A S R
* 0 0
+
+ 0 .
+
{Ce} * 0 . . Ml
0 * 4
Co +/- 0 0 *
Doy +/- 0 * 0
0
{9 | « | o o |
* + 2
0
* 0
+

FiGure 2. The tableau for M shows the cocircuits ¢, for e € S,
other cocircuits for e € Z, and the covector (. These cocircuits
are fundamental with respect to some basis that extends ZUS. The
algorithm constructs a covector C' by starting with ¢' «+— Cy and
composing €' — C o (Fe¢.) to make C(e) = D(e) when necessary,
while similar operations are applied to D using cocircuits from M.

(1) C«—Cy; D~ Dg;

Repeat
(2) For each e € S such that D(e) #0 and C(e) =0
(3) do C'— Co(D(e)ee);
//C(f) for f € (S\e)UAUZ is unchanged.
//C € L{My).
(4) For each ¢ € R such that C(e) #0 and D(e) =0
(5) do D — Do (C(e)d.);
//D(f) for f € (R\e)UAU Z is unchanged.
//D € L{Ms).

(8) Until C(S)= D(S) & D(R)=C(R);

Throughout the execution, whenever C(e) # D(e), such e must satisfy either
(i)e €S, D(e) # 0, and C(e) = 0, or (it) e € R, C(e) # 0, and D(e) = 0. Each
execution of step (3) or (5) makes C(e) = D(e) # 0 for one such e. The step might
cause, for some f, one of C(f) or D(f) to change so that C(f) = D(f) is no longer
true. However, C(f) # D(f) where both C(f) # 0 and D(f) # 0 is impossible.
A later step will make C(f) = D(f) true again. The common value will then be
non-zero so neither C(f) nor D(f) will change again. Therefore the execution must
terminate after |R| 4 |S| or fewer composition steps. O

The next lemma is a special case of the theorem that follows it.

LemMa 1.2, If|E| < rank(M3$)+rank(Mpg) and MV Mg is a free matroid,
that is, E = B U Bg for some By € B(M%$) and Br € B(MRg), then M, Mg
have a common covector. Moreover, every sign tuple X over Br N Br with some
non-zero entry is the restriction of a common covector.

PROOF. Since rank(M7)+rank(Mpg) > |E|, every By and Bp as above satisfy
Br N Bg # 0. The pair of tableaux for these bases is shown in part (a) of Figure 3.
For each e € By, N Bg, {c.} and {d.} are the fundamental cocircuits in M3, Mg,
respectively, of e. Given a sign tuple X # 0, let Cyy be an arbitrary composition of
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FicUrRE 3. Tableau pairs used respectively in the proofs of
Lemma 1.2 and Theorem 1.3.

X(e)e. and let Dy be an arbitrary composition of X(e)d.. Now Cjy and Dy satisfy
the hypotheses of Theorem 1.1 with A JZ = B, N Br, A # 0, S = BL\Bg and
R = Bp\Br. O

TuEOREM 1.3. Ifrank(M7 V Mg) < rank(M3) +rank(Mpg), then M+, Mg

have a common covector.

PrOOF. Let By € B(My), By € B(M3) and H C F realize the extrema in the
formula for the rank r of the union matroid M V M below.

7= B’IEHB&(%\(«) |B} UBY| = f}?&%(rankl(H/) +ranks(H') + |E\H'|)
BLEB(M2)
For these values, the general inequalities
| By UBs| = |[(B1UB)NH|+|(B1UB2)\H|
<|BiNH|+|B2NH|+ |E\H]|
<ranky(H) 4+ ranks(H) + |[E\H |
become equations and so
|By N H| =rank,(H), |B: N H| = ranks(H),
BinNnB,NH=0, and |(By U Bo)\H| = |E\H|.
Hence there are cocircuits described by the tableau pair shown in part (b) of Figure

3. Lemma 1.2 can now be applied to the cocircuits whose support is contained in

E\H. O
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1.1. An Orientation Condition. Theorem 1.3 does not apply to the case
covered by the next theorem. For realizable oriented matroids, the proof and the
proof of its converse (Theorem 3.1) are much easier. Whether the converse of
Theorem 1.6 is true for non-realizable oriented matroid pairs is an open problem.

DErFINITION 1.4. The oriented matroids My and Mp with chirotope func-
tions yr and ygr have a pair B; and Bs of common bases with opposite relative
orientations if the ordered sets By and Bs satisfy

(1.1) XL(B1)xr(B1)xr(B2)xr(B2) = —.

REMARK 1.5. Matroids My and Mp have a common basis if and only if
rank(Mp) = rank(Mg) and M3$ U Mg is a free matroid on E.

THEOREM 1.6. If M and Mg have a pair By and By of common bases with
opposite relative orientation, then M+, Mg have a common covector.

ProOOF. Let By and Bg satify (1.1) with minimum separation | B\ Bs| = | B2\ B1|
Consider the tableau of the fundamental cocircuits in /\/li‘ relative to basis Bf of
/\/li‘ and the tableau of the fundamental cocircuits of Mg relative to basis Bj.

To conveniently denote submatrices of these tableax, we assume £ 1s ordered
with the subset B{N BS coming first, followed by B2\ By, B\ Bz and finally By N Bs.
Let P be the submatrix of the tableau for /\/li‘ whose rows are indexed by Bs\ B
and whose columns are indexed by B\ Bs. When this tableau is restricted to rows
B\ By, matrix P appears as a block in [0 I P ---] where I is the identity matrix
whose rows and columns are indexed by By\Bj.

Similarly, let @ denote the block with columns Bs\Bjy in [--- @ I 0]; the
latter is the submatrix with rows By\Bs in the tableau of Mg.

The minimality assumption implies that By and Bs are the only common bases
of the restrictions of My and Mg to By U By. For if B’ C By U By were a common
basis strictly between B; and B the minimality subject to (1.1) would be violated
for exactly one of the pairs By and B’ or By and B’ since yg(B')xr(B’') = £1.

Consider the tableau for any matroid M relative to the basis B € B(M) and let
T(X,Y) be the square submatrix with rows corresponding to X C B and columns
Y C E\B. The non-zero entries of T(X,Y) define the bipartite graph G with
vertices X UY.

THEOREM 1.7. (Krogdahl, see [24] or [37, Ch. 3].)

1. If B\X UY € B(M), then G contains a perfect matching.
2. If G contains a unique perfect matching, then B\X UY € B(M).

Part 1. of Theorem 1.7 shows that the graphs of P and of () each contain
perfect matchings. Consider these bipartite graphs to be binary relations: their
composition is a binary relation R on By\Bj that therefore contains a permutation.
Now part 2. of Theorem 1.7 together with the fact that B; and By are the only
common bases of My and Mg in By U By show that the graphs of P and @ are just
perfect matchings and R is a single cycle permutation. For if this were not true,
R would contain a minimum length cycle of length less than |B1\Bsz|. This cycle
would be the composition of the binary relations of proper square submatrices of
P and @), where these relations are each perfect matchings.

We return to oriented matroid analysis. The product P@Q of signed permutation
matrices P and @ is now known to represent a single cycle permutation. Let M;
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= M\(B{ N BS)/(B1 N By) and M, = Mg\(B{ N BS)/(B1 N Bs). Hence Mj- =
My /(B 0 B5\(B1 N B2). The (particularly simple) oriented matroids M;+ and
M, are realized by [I P] and [@ I], respectively, interpreted as real matrices with
entries in {0,4+1, —1}. This is because each column of [T P] and [@ I] has a single
non-zero entry, so the circuits, cocircuits, etc., are completely determined by the
sign patterns of these matrices.

Cram 1.1. |P||Q| = —(=1)IB:\Bal,

ProoF. The ground set of M; and M, is A = (B1\B2) U (B2\B1). Each of
Mp and My are spanned by (B N B5)® = By U By. Therefore (see [2, pages
133-135]) chirotope functions for M; and M, are given by

Xi(X) = soxp (X5 F) and xr(X) = s, xr(X; F),
where F' = By N By. Here, “;” denotes concatenation of ordered sets or sequences.
The s; denote constant signs. A chirotope function for M- is given by

XIJ_(X) = SIXI(Y)E(XaA)'

Here, X = A\X and ¢(X, A) is the parity of the number of inversions when X
would be shuffled in A so A is ordered by X; X. Let the signs s; and s, used be
those for which Xf‘(Bz\Bl) = +1 and x,(B1\B2) = +1. Therefore XIJ‘ and y, are
realized by matrices [I P] and [@ I] respectively. Hence we have

[Pl QL 1] |1

= Xi (Bi\B2)xr(B2\B1)xi (B2\B1)xr(B1\B2)

= stxi(B2\Bi)e(B1\Bo, A)xi(B1\B2)e(B2\B1, A)x(B:\B1)xr(B1\B2)

= (=1)!PNPlsfx L (Bo\ By F)xn(Bi\Ba; F)s;xr(B2\Bi; F)Xr(B1\Bz; F)

= X£(B2)XL(BU)XR(B2)xr(B1)(~1)1P1 P!

- _(_1)|Bl\Bz|.
The calculation uses the fact that ¢(X, A)e(X, A) = (—1)|X”Y| and when | X| = | X|
this is (—1)IX1. q

CraiM 1.2. The number of —1 entries in P and @ together is even.

Proo¥F. The non-zero entries of P@) represent a permutation of |By\Bs| ele-
ments with exactly one cycle. Therefore,

IPQ| = _(_1)|Bl\32|(_1)number of —1 entries in P and .
But by claim 1.1, |PQ| = _(_1)|31\le. 4

Crat™ 1.3. There exist covectors Cy € £L(M7) and Dy € L(Mg) such that
o Cy(a) = Dy(a) #0 for all a € A = (B1\B2) U (B2\By1),

e Co(Bf N BS) =0 (note Bf N B is independent in M7), and

e Dy(B1 N By) =0 (note By N By is independent in Mg).

Proor. For e € B\By let ¢, € E(/\/li‘) be the unique cocircuit for which
ce(e) =+ and ¢.(f) = 0 for all f € Bf\e. Thus {c. : e € B3\ By} is a subset of the
fundamental cocircuits in /\/li‘ with respect to Bf € B(/\/li‘) It corresponds to the
rows indexed by Bs\Bj in the full tableau of which the tableau we showed for /\/lf‘
1s a submatrix.
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For e € B1\ By let d. € L(MRp) be the unique cocircuit for which d.(e) = +
and d.(f) = 0 for all f € By\e. These are some of the fundamental cocircuits in
Mg with respect to Bj.

Consider the bipartite graphs of P and of ) to which we applied Theorem 1.7.
Form A as the union of P and the reverse of (). We have shown that A is the
cycle (vg, v, ..., un11) where N = 2|B1\ Bs|. Call an arc in A" negative if the entry
in P or @ it corresponds to is —1. Define s : {0,... ,N — 1} — {41, -1} by

s(i) = (_1)number of negative arcs in the path from vg to v; in V.

Observe that since claim 1.2 shows that number of negative arcs in A is even,

—1 if arc (v;, vi41) is negative,

s(i)s(i+1) = { +1 otherwise

is true for all subscripts 0 < i < N — 1 with i + 1 taken mod N. Let vy € B2\By
be arbitrary. The compositions satisfy the claim:

Co = (5(0)cvy) 0 (5(2)ev,) 0 -0 (s(N = 2)eyy )
Do = (s(1)dy,) o (s(3)dys) 0+ -0 (s(N = 1)dyy_,) <
Claim 1.3 says Cy and Dy satisfy the hypotheses of Theorem 1.1 with M,
MiE, My = Mg, A= (B\B2)U(B2\By),S = BiNBS, R= B NByand Z =

Hence C' = D from Theorem 1.1 is the common covector.

=

|

2. Common Covector Problem Classification

Since rank(M7 V Mpg) < rank(M1) + rank(Mp) let us distinguish oriented
matroid pairs with rank(M$ V Mpg) < rank(M7+) + rank(Mp) from pairs with
equality here. The latter we will say have “full union rank.” Theorem 1.3 says
that pairs that do not have full union rank always have a common covector. See
[25, 33] for polynomial time algorithms to compute rank(M+ V Mg).

We will classify common covector problems into three categories. For the first
category, full union rank is impossible. For the other two categories we summarize
the properties of pairs with full union rank. Whether or not such pairs have a
common covector is the interesting question. The ground set cardinality |F| is
denoted by m.

Excess Rank Sum: rank(Mpg) > rank(My), in other words, rank(M31) +
rank(Mp) > m. Since m > rank(M7 V Mpg) Theorem 1.3 always applies.

Balanced Rank Sum: rank(Mpg) = rank(M), in other words, rank(M7$)+
rank(Mpg) = m. Assume full union rank. This case includes the given
applications to electrical networks and to Wy matrix pairs. Theorem 5.2
below shows the common covector problem is as hard as deciding if a square
matrix is not sign non-singular [3] (SNS) and thus it is as hard as the digraph
even cycle problem [22], even for rather simple classes of oriented matroids.
Theorem 1.6, its converse for realizable oriented matroids, and its conjecture
for all oriented matroids apply to this case.

Deficient Rank Sum: rank(Mg) < rank(M ), in other words, rank(M$ )+
rank(Mpg) < m. Assume full union rank. Corollary 5.5 shows the common
covector problem is NP-complete.
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3. Realizable Oriented Matroid Pairs

THEOREM 3.1. If realizable /\/li‘ and Mpg have a common non-zero covector
and Mg and Mg have a common basis then My and Mg have a pair of oppositely
directed bases.

ProOF. The determinant (“bracket”) of the square submatrix of M; with
columns B is denoted by M;[B]. A chirotope representation y; for M(M;) has
values y;(B) = o(M;[B]). The product of real variables g. for e € B is denoted g¢p.
Let G = diag(g.). Laplace’s theorem and Lemma 1.1 in [4] show that

(3.1)

A=|[ )| = X anal s Blgn = ¢ 5 MalBA Bl
BCE BCE

where C' = £ M#[E\Bo]/ML[By)] for an arbitrary By for which Mp[Bg] # 0. Thus
A is not identically 0 since My and Mg have a common basis. Since A = 0 for
some positive values for the g., two terms in (3.1) have opposite sign. O

THEOREM 3.2. Suppose realizable My and Mpg have a common basis. The
following conditions are equivalent.

/\/li‘,/\/lR have a common covector.
My, M% have a common covector.
ME, Mg have a common vector.
M, M% have a common vector.

ProoFr. By Theorems 3.1 and 1.6, the first two conditions are each equivalent
to M and Mg having a pair of oppositely directed common bases. The other two
conditions follow because £L(M*1) = V(M) and L(M) = V(ML). O

4. Sandberg-Willson Theory and its Dual

Consider the problem to solve the equation AF(z)+ Bx = ¢ for x € R”, where
A and B are n x n matrices, F' : R" — R” has the form F (), = fi(zr) with each
fr being a strictly monotone increasing function from R onto R, and AF () denotes
the real column vector whose kth entry is Y Ag;fi(2;). Suppose the equation has
two distinct solutions # and z’. Then A(F(2') — F(x)) 4+ B(¢' — x) = 0. The
strict monotonicity assumption for F' means o(F(z')— F(2)) = o2’ —2) = X # 0.
Therefore M[A B] and M[I —I] have a common non-zero vector [X X]. Conversly,
suppose M[A B] and M[I — I] have a common non-zero vector. This means some
z,y € R” satisfy Ay + Be = 0 and o(z) = o(y) # 0. Define F' = (f.) so
fe(t) = (ye/x)t if 2. #£ 0 and fo(t) =t otherwise. With this F, AF(2)+ Bz =0
has multiple solutions.

These ideas were observed by Sandberg and Willson who proved that, for given
(A, B), the solution # exists and is unique for each choice of functions f; and ¢ € R”
is equivalent to the properties of (A, B) below.

THEOREM 4.1. (Willson, [41]. ) These properties of a pair of n x n matrices
(A, B) are equivalent.

1. |[AD + B| # 0 for every diagonal matriz D > 0.
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2. There exists a matriz? M € C(A, B) such that |M| # 0 and for all N €
C(4, B), |M] - [N| > 0.

3. For each © € R"™ with  # 0, there is an index k such that (xA)r # 0 or
(xB)r £ 0, and such that (xA)p(xB); > 0.

4. For each x € R"™ with x # 0, there is a diagonal matriz Dy > 0 such that
either AD, Alz! >0 or xBD,B'z! > 0 and such that xAD,B'x! > 0.

5. For each complementary pair (M, N) taken from C(A, B), (that is, M =
(A, B)(S" U (E\S)") and N = (A, B)((E\S)' US")) we have that each real
rool A of |M — AN| is non-negative.

6. There exists a complementary pair (M, N) taken from C(A, B) such that
MLIN € Py, in the sense of Fiedler and Ptdk [14].

7. There exists a non-singular M € C(A, B) and for any complementary pair
(M, N) taken from C(A, B) with M non-singular, M1 N € Py.

A pair of matrices (A, B) that satisfies these properties is called a Wy pair, denoted
(A, B) eEWs.

This section shows two conditions on the oriented matroid M = M[A B]
realized by the row space of [A B] are each equivalent to (A4, B) € Wy. Each
condition is a combinatorial property of M together with the involution ¢ — (n+1¢)
given on the ground set E where |E| = 2n. The two conditions are known to
be equivalent for realizable oriented matroids from Theorem 3.2. One condition
reflects the argument given above for uniqueness of solutions to AF(z) + Bz = c.
The other pertains to a problem dual to AF(z) + Bx = ¢ in the sense that the
row space of [A B] plus a constant is an affine feasible set that is then further
constrained by strict monotone diagonal nonlinearities.

REMARK 4.2. A common covector of M[A B], M[I —I]is [Z — Z] where for
some t € R, 0(td) = —o(tB) = Z. A common vector of M[A B, M[I — 1] is
[W W] where there exist z,y € R™ such that Az + By = 0 and W = o(2) = o(y).

THEOREM 4.3. For a pair of n x n matrices (A, B), the following conditions
are equivalent.
1. (A, B) € Wy in the sense of Theorem 4.1, e.g., |AD+ B| # 0 for all positive
diagonal D, etc.
2. rank M[A Bl =n and L[A BN L[I —1I] ={0}.
rank M[A Bl = n and V[A BN V[I — I] = {0}.
4. (Fundamental theorem of Sandberg and Willson [36, 40]) For all functions
F:R™ = R" of the form F(x)y = fi(xr) where each fi is a strictly mono-
tone increasing function from R onto R and for all c € R"”, the equation

AF(x)+ Br =c¢

o

has a unique solution .
5. For all functions G : R" — R” of the form G(w)r = gip(wy) where each
gr 18 a strictly monotone wncreasing function from R onto R and for all
d,d" € R", the equations
(4.1) u' = 2A+d, w=2B+d", u=-G(w)

have a unique solution (u,w,z).

2The following notation is used in [41]: C'(4, B) is the collection of all 2™ matrices of order
n X n that are constructed by juxtaposing for each ¢ in the order 1, 2, ..., n, either column A; or

B;.
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ProoF. The equivalence of 1. and 4. was proved in [40, 41]. We will use it to
prove b. below.

The equivalence of 1. and 2. is proved using property 3. of Theorem 4.1. The
first part of property 3., 2[A B] = [¢A xB] # 0 for all # # 0 is equivalent to
rank M[A B] = rank[A B] = n.

Suppose rank M[A B] = n and L[A B] N L[I — I] = {0}. Then for all z # 0,
o(xA) # —o(xB); so for at least one k, o(zA)(k) # —o(xB)(k). At least one of
(zA), and (¢ B) is non-zero and (zA)i(2B), > 0.

For the converse, note that when rank[A B] = n, L[A Bl n L[I —1I] = {0}
is equivalent to o(xA) # —o(xB) for all ¥ # 0. Therefore L[A BN LI —1I] =
{0} because a(xA)(k) # —o(xB)(k) for the index k that satisfies property 4.1(3).
Therefore, 1. and 2. are equivalent.

To use Theorem 3.2 (known for realizable oriented matroids only) to prove that
2. implies 3. one must show rank(M[A4 B]VMI[I —I]) = 2n, i.e., this union matroid
is free. However, if it were not, Theorem 1.3 would contradict £[A B] N L[] —I]
= {0} since rank(M[A B]) = n is assumed and rank(M[I —I]) = n.

Let the rows of matrix [P @] be a basis for the orthogonal complement of the
row space L[A B]. When rank[A B] = n, [P @] is a rank n matrix with n rows and
2n columns. By oriented matroid duality principles, that M[P Q] and M[I I] =
M([I — I]* have no common covector is equivalent to V[A B]NV[I — I] = {0}.
Given condition 3., Theorem 1.3 implies as before that M[P Q] Vv M[I I] is free.
Hence Theorem 3.2 tells us M[P @], M[I I] have no common vector, since we are
working with realizable oriented matroids. But no common vector for this pair
means that their duals M[A B], M[I — I] have no common covector. Therefore,
condition 3. implies condition 2.

Equations (4.1) are equivalent to

Pu—Q(~w) = Pd"+ Qd"" u=—-G(w) =Gi(~w)

for some vector function Gy satisfying the same conditions as G.

Suppose (A, B) satisfies 1. and therefore 2. Hence rank M[A B] = n and so
rank(M[P — @]) = n. By duality, £[A B] N L[I —I] = {0} is equivalent to
VIP Q1N V[I I] = {0}. In general, the existence of common non-zero (co)vectors
of oriented matroids M; and M5 on ground set £ is invariant under reorientation
of M; and M3 on the same subset of E. Specifically, V[P QN V[I I] = {0} if
and only if V[P — QN V[I —I] = {0}. Condition 3., applied to (P, —@), is now
known to imply condition 4. with (P, —@Q) taking the place of (A, B). Therefore, the
solution components (u’, —w') exist and are unique. The z' component is unique
since rank[A B] = n. Hence condition 5. is proven for (A, B).

Conversely, suppose condition 5. is true so (4.1) has a unique solution (u, w, z)
for all G as specified and for all d’ and d”. Then rank[A B] = n since z is unique.
Therefore rank[P — @] = n because rank[P @] = n. The latter also shows that
for all ¢ there exist d’ and d” so ¢ = Pd’' + Qd". So, for all ¢, Pu' — Q(—w') = ¢
and v = G1(—w) have a unique solution (u!, —w'). This satisfies condition 4.
applied to the matrix pair (P, —@). Thus 3. applies to (P,—@Q). By reorientation,
VIP Q1N V[I I] = {0}. By duality, £L[A BN L[I —I] = {0}. However, this and
rank(M[A B]) = n is condition 2. for (A, B). O
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COROLLARY 4.4. Let there be given four real n column matrices in pairs (A, B)
and (P, @), where each pair has full row rank and the row spaces are orthogonal
complements, i.e., L[A B] = L[P Q]*. The following conditions are equivalent.

1. (A, B) e Ws.

2. (P,—Q) e Wy.

3. rank(M[A B]) = n and M[A B], M[I — I] have no common covector.

4. rank(M[A B]) = n and M[A B], M[I — I] have no common vector.

5. rank(M[P Q]) = n and M[P Q], M[I I] have no common covector.

6. rank(M[P Q]) = n and M[P Q], M[I I] have no common vector.

7. For allz,y e R", Ax + By =0 and o(z) = o(y) implies x = y = 0; i.e., if

z#0 ory#0, then for some index k, 2 #0 or ypr £ 0, and xpy, < 0.
8. For allu € R", o(u'A) = —o(u'B) implies u=0 (q.v. Theorem 4.1( 3).)

REMARK 4.5. Case 3. of Corollary (4.4) is a specialization of L(M$)NL(Mpg) =
{0} and the matroids M and Mp have a common basis. However, the latter con-
dition is equivalent to M+ @ M’ and M[I; — I5] having no common covector and
Mip @ M’IJSL and M[Is — I5] having a common basis. Here M’g is isomorphic to
Mg on a disjoint copy of the ground set of M of size m, and I i1s the order 2m
identity matrix.

5. Sign Solvability and Computational Complexity

A sign matrix A is by definition an L-matriz if every real matrix with sign
pattern A has all linearly independent rows. A square L-matrix is said to be sign
non-singular (SNS, see [3] for a discussion of these topics.) We show that A4 is not
an L-matrix is equivalent to a pair of rather simple linear subspaces (i.e., realized
oriented matroids) having a common covector.

LEMMA 5.1. Gwen m x n sign matriz A with no rows of zeros, let E be the
set of positions 1j where A;; # 0 and define an m x |E| matrizc My and an n x |E|
matric Mp by

oy Ay ife=idg .1 fe=1y
Mp(iye) = { 0 otherwise and - Mg(j,€) = 0 otherwise.

Then A is an L-matriz if and only if M(Mr) and M(Mg)* have no common
covector.

PrOOF. Let GG be the diagonal matrix of g;; for ij € E. Every real A’ with
o(A’) = A can be written as A’ = M GM}, for some real g. > 0.

Suppose some linear combination of the rows of A’ were 0. Some non-zero
member of the row space & € L(Mg) would be in L(MRG)J‘. The signatures
from the latter subspace are the covectors of M(Mg)®. Hence o(z) is a common
covector.

Conversely, suppose ¢ € L(Mr) and y € L(Mg)?* satisfy o(z) = o(y) # 0.
Define g. = y(e)/x(e) when z(e) # 0 and g. = 1 otherwise. Hence G is positive
diagonal, G € L(Mg)* and so x € L(MrG)*. O

THEOREM 5.2. The problem of telling if a square sign matriz matriz A is
not SNS s polynomaial time reducible to the common covector problem for My =
M(Mp) and M%E = M(Mg)t where My, and Mg realize oriented matroids with a
common basis and whose underlying matroids are partition matrouds.
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i
a. b. c.

FIGURE 4. a. Network for matrix A’ of Theorem 5.2, with positive
resistors E, nullator edges P and norator edges ). Let M be
the graphic oriented matroid. Let My = M/P\@Q and Mpg =
MA\P/Q. This electric network model is well-posed for all positive
resistance values if and only if My, M# have no common covector.
The SNS problem for 0,+1 matrices is reducible to cases of this
electrical problem. For 0,41 matrices, negative resistors can be
simulated by (b.). When F is a cycle with 4k edges, the network
determinant A has exactly two terms and they have opposite sign.
The Wheatstone bridge (a K4 with the nullator and norator as a
disjoint pair of edges) is the case of k = 1. The case of k = 2 is

(c.), A = 91939597 — g294969s.

ProoF. To reduce, first test if det A’ is identically 0 by a polynomial time
bipartite matching algorithm [25, 33]. If so, A is not SNS. Otherwise, the reduction
given in Lemma 5.1 satisfies the theorem. O

REMARK 5.3. Matrix A’ above is the system matrix for the nullator, norator,
and resistor network shown in Figure 4. Therefore the common covector problem
cases from electrical applications, to determine if a network model is sometimes but
not always ill-posed [18, 19, 20], are no easier than the (non) SNS problem.

REMARK 5.4. Generalizing part (c¢) of Figure 4 gives a family of graph pairs
{(G¥,G%)}. For each member, M(G%), M(G%)L have a common covector. But no

proper minor pair (G£/X\Y,G%/X\Y) satisfies this property. See [32, 15].

THEOREM 5.5. The common covector problem for row spaces of integer matri-
ces 1s strongly NP-complete.

Proor. The NP algorithm is to guess the common covector and verify it by
solving two instances of the integer linear programming feasibility problem. The-
orem 13.4 on page 320 of [33] gives an upper bound on the magnitudes of some
solution to a feasible integer linear program in terms of the magnitudes of the
coefficients. The upper bound implies that the verification can be done in time
polynomial in the number of bits needed to code the matrices.

To prove the NP-hardness, use Lemma 5.1 to reduce the problem of telling if
rectangular A is not an L-matrix to the common covector problem. The former
problem was shown to be NP-complete by Klee, Ladner and Manber in [22]. Since
the instances from the reduction are coded with 0,+1s, the NP-completeness is
strong [16]. O
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REMARK 5.6. The proof presented at the conference used reduction from the

“feedback arc set” problem for directed graphs [16].

(1]

26]
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