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Contemporary MathematicsVolume 00, 19xxOriented Matroid Pairs, Theory and an Electric ApplicationSeth ChaikenAbstract. The property that a pair of orientedmatroidsM?L ,MR onE havefree union and no common (non-zero) covector generalizes oriented matroidduality. This property characterizes when certain systems of equations whoseonly nonlinearities occur as real monotone bijections have a unique solutionfor all values of additive parameters. Instances include sign non-singularity ofsquare matrices and generalizations of positive de�niteness given by Fiedlerand Pt�ak. Other instances of this property include various kinds of character-izations of when an electric network problem is well-posed. Such characteriza-tions have been given in terms of matrix pairs by Sandberg and Willson andin terms of electrical network graphs by Du�n, Minty, Hasler and Neirnyck,and by Nishi and Chua.Cases of the general common covector problem are classi�ed. Naturalmatroid rank conditions are su�cient for a common covector to exist. Analgorithm to construct a common covector by composing certain fundamentalcocircuits is given. If ML and MR have two common bases with oppositerelative orientation (chirotope value) thenM?L ,MR have a common covector.This abstracts the realizable case of a determinant expansion having termsof opposite sign. An open problem is whether M?L ,MR having a commoncovector implies that ML and MR have two common bases with oppositerelative orientation, when the latter have one common basis and are not real-izable. A weaker conjecture is M?L ,MR have a common covector if and onlyifM?L ,MR have a common vector, whenML andMR have a common basis.The computational complexity of the problem \DoM?L ,MR have a com-mon covector?" when ML and MR have a common basis is at least as highas telling if a square matrix is not sign solvable or if a digraph has an evendirected circuit. When rank(M?L )+ rank(MR) < jEj the problem is stronglyNP-complete and it generalizes non L-matrix sign pattern detection.IntroductionThe theory begins with the de�nition of an elementary property of a pair of reallinear subspaces, say the row spaces of two real matrices. The signature function� : RE ! f0;+;�gE maps each real tuple into the pattern of its signs.1991 Mathematics Subject Classi�cation. Primary 52B40, 05B35; Secondary 94C05, 15A06.Key words and phrases. oriented matroids, electrical circuits, nonlinear networks.This research was mostly performed during a Sabbatical from the State University of NewYork at Albany. c0000 American Mathematical Society0271-4132/00 $1.00 + $.25 per page1



2 SETH CHAIKENDefinition 0.1. Two linear subspaces L1 and L2 of RE for �nite set E havea common covector if there exist x 2 L1 and y 2 L2 for which �(x) = �(y) 6= 0.This de�nition of common covectors for realized oriented matroid pairs natu-rally generalizes. The covector set of an oriented matriod is denoted by L. Thedual of an oriented matroidM is denoted by M?. See [1] for an exposition oforiented matroids that emphasizes how the matroid dual abstracts the orthogonalcomplement of a real linear space.Definition 0.2. A pair of oriented matroids M?L ,MR on the same groundset E have a common covector X if X 2 L(M?L ) \ L(MR) and X 6= 0.Orthogonal pairs of subspaces, and, more generally, dual pairs of oriented ma-troids, never have common covectors.The Electric Network Model. This section distills material from [11, 12,18, 21, 26, 29, 30, 34]. A �nite, lumped analog DC electric network model isa set of devices and a network graph which represents their interconnection. Thegraph nodes model maximally connected electrically conducting regions typicallycomprised of physically connected metal wires. Some graph edges correspond toidealized two terminal electrical devices such as voltage sources (batteries), resistors,diodes, etc. Each terminal is identi�ed with a node. Every two terminal device willbe identi�ed with its edge. Other devices such as transistors, ideal operationalampli�ers, and other kinds of controlled sources have three or more terminals. Foreach device, the model has some edges between some pairs of that device's terminals.See [12, Ch. 13].The usual schematic diagram of such a network uses solid lines for the wires,dots for wire junctions and standard symbols for the devices. See parts (a-c) ofFigure 1 and Figure 4 for examples. The edges for devices with three or moreterminals are usually omitted. One node is often distinguished as the \ground."The ground node is understood to be connected by wires between multiple groundsymbols in addition to the explicit wire lines.Let E be the set of network graph edges. The matroids that motivate oursubject all have ground sets that are either subsets of E or subsets of disjointunions of copies of E. Many are graphic or cographic.The electric network model determines a set of real equations on 2jEj variables:Variable ve for e 2 E represents the potential di�erence or voltage between theendpoints of e, and ie represents the rate of charge ow or current through edge e.Flow is conserved at nodes. The equations fall into two classes: the structural laws(Kirchho�'s laws) and the constitutive laws (the device characteristics). Kirchho�'svoltage law (KVL) says vE = (ve; e 2 E) is in the cocycle space of the networkgraph. Kirchho�'s current law (KCL) says (ie; e 2 E) belongs to the cycle space.See [21, 29, 30]. The fact that these spaces are orthogonal is known in the electriccircuit theory literature as Tellegen's theorem.The constitutive law for a voltage source edge e (i.e., an ideal battery) is veequals a constant. For current source edge e, ie equals a constant. These constantsare considered independent \input signals" to the system. They will generally beparameters. Notice that when, say, e is a voltage source, the current ie is anunknown variable.The constitutive law for a positive, linear resistor edge e is called Ohm's law:ve = reie, where constant re > 0 is called the resistance (of e). The reciprocal



ORIENTED MATROID PAIRS 3ge = r�1e is called the conductance. For a diode the law is ie = D(ve)�D(0) whereD : R ! R+ is exponential. For a more realistic model with reverse breakdown,this current function would be onto R but still monotonic. An ideal operationalampli�er device has 4 terminals and two disjoint edges, say e and f . The outputedge f is incident to the ground. The constitutive law is ve = 0 and ie = 0. Thislaw is the limit, as A goes to in�nity and vf is bounded, of the more realistic (DC)law ie = 0 and vf = Ave. The constant A here is called the open loop gain, whichis typically at least 105 and is over 107 in some modern commercial units [23].Either model is a good approximation when the non-ideal operational ampli�erhas su�ciently large gain, the system is stable (as a dynamic system stabilized byfeedback), and the voltages and currents of the ampli�er are within the ranges for\active operation." See [12, Ch. 9 and 11].Definition 0.3. The network model is called well-posed when for all real val-ues for the input signal parameters, the equations (in the voltage and current vari-ables) have a unique solution. Otherwise it is ill-posed.The linear or non-linear constitutive laws for many devices other than the(constant) sources are generally known only approximately. The central motivatingquestion for this paper is what combinatorial properties of the network graph candistinguish three possibilities: (1) the network model is well-posed for every choiceof continuous, monotone increasing constitutive law functions; (2) the model iswell-posed for some and ill-posed for other choices of such constitutive laws; (3)the model is ill-posed for all such choices. In this paper, we will relate the answerto this question given by [18, 19, 20, 12, Ch. 31] and work cited below to resultsabout the common covector problem for oriented matroid pairs. For example, theuniqueness proofs given when the constitutive laws for two terminal devices aremonotone cite Tellegen's theorem. However, they only use the its consequence thatthe network graph's cycle and cocycle spaces over RE have no common covector.We analyze the voltage divider in part (a) of Figure 1 for an example. Let useliminate the current and voltage variables for the voltage source V0. Kirchho�'slaws constrain the rest of the voltages v = (ve; vf ) and currents i = (ie; if ) to a�nelines in R2. The equations below show representative homogeneous coordinates inR3 of the points on these lines as s and t range over R. The corresponding R2coordinates v and i are also shown. The cocycle and cycles spaces of the 2 edgecircuit graph are denoted by C? and C respectively. This graph is the contractionby edge V0 of the original network graph.[s; 1] e f0 �1 11 V0 0 = [1; V0� s; s] [t; 1] e f0 1 11 0 0 = [1; t; t]fv = (V0 � s; s) : s 2 Rg= voltages v feasible under KVL. fi = (t; t) : t 2 Rg = currents(ows) i feasible under KCL.v 2 v0 + C? i 2 i0 + COhm's law for this problem is v = iR = i�re 00 rf� :To prove that a solution is unique, let �v = v � v0 and �i = i � i0 for two solutions(v; i), (v0; i0). Then �v 2 C, �i 2 C? and �v = i0R � iR. If �v and �i are not
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{0, 3}a. b. c. d. e. f.Figure 1. Examples of electrical network models with unique so-lutions because the oriented matroids coding feasible current andvoltage sign patterns have no common covector. Edges V0 are volt-age sources with value V0. Part (a) is a classical voltage divider.Part (b) is the schematic of a feedback system with an ideal oper-ational ampli�er. Part (c) shows that device with its edges. Thenullator edge h = (1; 2) and the norator edge k = (0; 3) are idealtwo-terminal devices that signify the constitutive law for the am-pli�er. Part (d) is the network graph drawn as in graph theorybooks. Suppose the ampli�er's constitutive laws are used to elim-inate vn and in for both n = (1; 2) and n = (0; 3). The remainingvoltages are constrained by KVL to the cocycle space C?V of the\voltage graph" shown in part (e). The remaining currents areconstrained to the cycle space CI of the \current graph" of part(f). [11, 26]both zero, then �(�v) 6= �(�i) since C and C? have no common covector. However�(�v) = �(�i) since the resistance values (entries in diagonal matrixR) are positive.The same argument would apply for nonlinear resistance functions ve = re(ie) thatare strictly monotone increasing. The oriented matroids with no common covectorare realized by matrices M?L = [�1 1] (whose row space is C?) and MR = [1 1](whose row space is C.)A network model as in part (b) of Figure 1 with an ideal operational ampli�ercan be expressed by a network model as in parts (c-d) of Figure 1 with two kindsof special device edges in addition to resistor, voltage sources and current sources:nullators and norators. Kirchho�'s laws constrain the voltage drops and currentsto the cocycle and cycle spaces of this graph as before. However, a nullator edgeh represents the further constraint that its current ih is 0 and its voltage ve is 0.Edge k is called a norator to indicate that it conducts current but is not subject toany constitutive law constraint directly.Let us analyze the network given by part (b) and equivalently by part (c) ofFigure 1 as we did for part (a). This time, we eliminate the variables vh; ih; vk andik for the nullator and norator in addition to the voltage source.



ORIENTED MATROID PAIRS 5Here are the equations:[s; 1] e f0 1 01 0 V0 = [1; s; V0] [t; 1] e f0 1 11 0 0 = [1; t; t]fv = (s; V0) : s 2 Rg = voltagesv feasible under KVL. fi = (t; t) : t 2 Rg = currents(ows) i feasible under KCL.v 2 v0 + C?V i 2 i0 + CIKirchho�'s voltage law now constrains the remaining voltages v = (ve; vf ) to(Constant)v0 + C?V , where C?V is the cocycle space of the voltage graph (part (e)of Figure 1). The KCL constraint on i = (ie; if ) uses the cycle space CI of adi�erent graph (part (f) of Figure 1) called the current graph.A solution for the model in parts (b-c) of Figure 1 is unique because the non-orthogonal row spaces C?V and CI ofM?L = [1 0] andMR = [1 1] respectively do nothave a common covector.Let G be a network graph with nullators P and norators Q. After eliminatingboth variables for each edge in P [ U , the voltages feasible under KVL are thecocycles C?V of the voltage graph G=PnQ. The feasible currents are the cycles CI ofthe current graph G=QnP . Such distinct graphs to represent KVL and KCL con-straints for nullator and norator models as well as models with controlled sourcesare described in [10, 26, 11, 18, 19, 34]; see also [6]. Realistic (DC) modelsfor multiterminal devices such as transistors can be expressed either by generallynonlinear relations among voltages and currents of the device's edges (called ports)or by a network of 2-terminal devices whose edges either have (generally nonlinear)resistance or conductance functions, or are nullators or norators. Thus a multi-terminal device would be replaced by a subnetwork composed only of 2-terminaldevices (which are called 1-ports). Nullators and norators generalize to matroidpairsML,MR:� When e is a nullator the reduction by e is (ML=e), (MRne).� When e is a norator the reduction by e is (MLne), (MR=e).RelatedWork and Summary. The no common covector condition for unique-ness also can be used to establish the existence of solutions when rank conditions aresatis�ed and the nonlinear real functions are onto as well as monotone. This themeappears in the work of Sandberg and Willson [36] (see also the survey [42]). We willrelate this theory, expressed in terms ofW0 pairs of square matrices [40, 41], to ori-ented matroids in section 4. However, similar results developed with graph theoryappear in [32] and in [18, 19, 20]. Many of the arguments given in [18, 19] ex-tend immediately to oriented matroids because they are based on Minty's paintingtheorem and simple properties of digraphs which together can axiomatize orientedmatroids. Earlier work of Du�n [13] and Minty [28] treated only orthogonal sub-spaces as sources for sign relationships that imply existence and uniqueness. Alsosee [35].The role of common bases in telling if an electric network model is well-posedwith generic coe�cients in linear constitutive laws is apparent in [18, 19] and istreated explicity in [29, 30, 34]. Commonbases used to address solution propertiesappears in [8]. Common bases and algorithms for cases of the graph theory anal-ysis [32] are used in [27]. See also the literature on symbolic simulation [43, 12,



6 SETH CHAIKENCh. 52], and the matrix tree theorem [6, 8, 7]. Ported matroid Tutte polynomi-als [9] will be extended to oriented matroids and applied to electric problems in afuture publication.Section 1 begins with theorems that show that natural conditions on the ranksof two oriented matroids and their union are su�cient for them to have a commoncovector. G. Ziegler mentioned [44] that such results could be proved using themethods of [5]. However, our proofs construct the covector by elementary algo-rithms.The rank conditions do not apply to those cases of the linear subspace (i.e.,realizable oriented matroid) common covector problem that are formulated to dis-tinguish possibilities (1) from (2) among the three possibilities given after de�ni-tion (0.3). Instead, in these cases, a common covector exists if and only if thereare terms of opposite sign in the Laplace expansions of certain determinants. Insection 1.1 we prove that the natural generalization of this term sign condition togeneral oriented matroid chirotopes implies that common covectors exist. We leaveas an open problem the converse. A combinatorial proof of the converse might leadto algorithms that search for \substructures" (i.e., minors) in electrical networksand other nonlinear systems that are necessary and su�cient for non-uniqueness insome instances of systems with a given \structure." In the graph of a network thatincludes transistors, each transistor appears as a triangle with one distinguishededge1. For networks with the (quite accurate) Ebers-Moll model used for transis-tors, Nielsen and Willson applied the theory of W0 pairs of matrices to prove [31]that all instances of networks with the same structure (i.e., network graph) have aunique solution if and only if the graph does not have a \feedback structure" graphminor, which is a triangle of parallel edge pairs from exactly two transistors withthe two distinguished edges in two distinct sides. (See [38, 12, Ch. 31].)Section 2 classi�es instances of the common covector problem and summarizesthe results. Properties known only for the realizable case are given in section 3.In particular, the existence of a common covector is equivalent to the existence ofa common vector when the rank conditions do not imply either. These propertiesare applied in section 4 to give an oriented matroid interpretation of the class ofW0 matrix pairs [41]: A pair (A;B) of square real matrices is in W0 if and onlyif the row spaces of [A B] and [I � I] have full rank and no common covector.We use this to derive a problem dual to the original problem given by Willson (seeTheorem 4.3) where matrix pairs of type W0 were applied.Section 5 has some rather pessimistic facts about the computational complexityof the common covector problem. First, when rank(M?L ) + rank(MR) < jEj, thecommon covector problem (even in the realizable case) is strongly NP-complete.Second, the case relevant to the given applications (complementary rank and freeunion) includes the (complement of the) sign non-singularity (SNS) question forsquare matrices of signs [3]. This problem is known to be polynomial time equiv-alent to the even cycle problem for digraphs [22]. These problems have been rec-ognized as deep, unsolved combinatorial problems for which it is unknown whetherthey lie in complexity classes P, NP-complete or in between [22, 39].Rigidity and Elasticity. It would be interesting to know electrical analogs ofrigidity [17] properties, or if some rigidity properties are equivalent to no commoncovectors. We mention the basic analogies. Stress (a signed scalar for each bar) in1The distinguished edge represents the emitter and collector terminal pair.



ORIENTED MATROID PAIRS 7a multidimensional bar framework is an analog of edge conductance in an electricalnetwork: the force vector in a bar is analogous to current; joint position is analogousto absolute node potential. The fact that a non-zero stress must be positive insome edges and negative in others is a manifestation of the fact that the (dual pairof) graphic and cographic oriented matroids of the same graph have no commoncovector. We therefore note that the electric network analysis problem \given theconductances �nd the voltages" and the problem applicable to rigidity analysis\determine what stresses a given framework can sustain" are opposite problems.The electrical analog of an elastic \spring" network with some vertices pinnedis a network with �xed positive conductances whose only sources are voltage sourcesall joined at a common node. The elastic analog of parts (b-c) of Figure 1 is easyto visualize: A robot standing on the ground watches node 2 and pulls up on node3 just enough to align node 2 with the top of a rod that stands V0 meters high.Standard Theory and Terminology. Our use of standard matroid and ori-ented matroid terminology and results generally follows [2]. Matroid union is de-noted by _. The row space of matrix M is denoted by L(M ). The sign tuplesof members of this space comprise the covectors L(M ) of the oriented matroidM(M ) realized by M . The collection of vectors of oriented matroidM is denotedby V(M). The vectors of realizableM(M ) are the sign tuples of members of theorthogonal complement of L(M ).Section 1 uses the tableau matrix notation to express fundamental cocircuitsand conditions for basis exchanges that is developed in Chapter 10 of [2]. Ournotation di�ers slightly as we include the current basis elements in the column setof the tableau. A matrix decomposed horizontally into disjoint blocks A, B, etc. isdenoted by [A B � � � ].1. Common Covector Existence TheoremsThe �rst theorem is used for the others. Its proof contains an algorithm toconstruct a common covector e�ciently by composing covectors with cocircuits.Theorem 1.1. LetM1 and M2 be oriented matroids on the ground set A �[Z �[ S �[ R. Assume the covectors C0 2 L(M1) and D0 2 L(M2) satisfy theproperties:1. A 6= ; and C0(a) = D0(a) 6= 0 for all a 2 A,2. S �[Z is independent inM1 and C0(S �[Z) = 0, and3. R �[Z is independent inM2 and D0(R �[Z) = 0.Then M1,M2 have a common (non-zero) covector C 2 L(M1) \ L(M2) that iscompatible with both C0 and D0. In other words, C0 � C and D0 � C.Proof. There exist sets of fundamental cocircuits fce : e 2 Sg and fde : e 2Rg and one covector C0 and D0 in each of M1 and M2 as described by the twotableaux in Figure 2. Observe ce(Sne) = 0, de(Rne) = 0, and ce(Z) = de(Z) = 0.The assertions marked \//" in the algorithm can be veri�ed by induction.Input: Covector C0 ofM1, a covector D0 ofM2, a cocircuit ce of M1 for eache 2 S, and a cocircuit de ofM2 for each e 2 R as described.Output: Common covector C = D ofM1 andM2.
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10 SETH CHAIKEN1.1. An Orientation Condition. Theorem 1.3 does not apply to the casecovered by the next theorem. For realizable oriented matroids, the proof and theproof of its converse (Theorem 3.1) are much easier. Whether the converse ofTheorem 1.6 is true for non-realizable oriented matroid pairs is an open problem.Definition 1.4. The oriented matroids ML and MR with chirotope func-tions �L and �R have a pair B1 and B2 of common bases with opposite relativeorientations if the ordered sets B1 and B2 satisfy�L(B1)�R(B1)�L(B2)�R(B2) = �:(1.1)Remark 1.5. Matroids ML and MR have a common basis if and only ifrank(ML) = rank(MR) andM?L [MR is a free matroid on E.Theorem 1.6. IfML andMR have a pair B1 and B2 of common bases withopposite relative orientation, then M?L ,MR have a common covector.Proof. Let B1 and B2 satify (1.1) with minimumseparation jB1nB2j= jB2nB1j.Consider the tableau of the fundamental cocircuits inM?L relative to basis Bc1 ofM?L and the tableau of the fundamental cocircuits ofMR relative to basis B1.To conveniently denote submatrices of these tableax, we assume E is orderedwith the subset Bc1\Bc2 coming �rst, followed by B2nB1, B1nB2 and �nallyB1\B2.Let P be the submatrix of the tableau forM?L whose rows are indexed by B2nB1and whose columns are indexed by B1nB2. When this tableau is restricted to rowsB2nB1, matrix P appears as a block in [0 I P � � � ] where I is the identity matrixwhose rows and columns are indexed by B2nB1.Similarly, let Q denote the block with columns B2nB1 in [� � � Q I 0]; thelatter is the submatrix with rows B1nB2 in the tableau ofMR.The minimality assumption implies that B1 and B2 are the only common basesof the restrictions ofML andMR to B1[B2. For if B0 � B1 [B2 were a commonbasis strictly between B1 and B2 the minimality subject to (1.1) would be violatedfor exactly one of the pairs B1 and B0 or B2 and B0 since �R(B0)�L(B0) = �1.Consider the tableau for any matroidM relative to the basis B 2 B(M) and letT (X;Y ) be the square submatrix with rows corresponding to X � B and columnsY � EnB. The non-zero entries of T (X;Y ) de�ne the bipartite graph G withvertices X �[ Y .Theorem 1.7. (Krogdahl, see [24] or [37, Ch. 3].)1. If BnX [ Y 2 B(M), then G contains a perfect matching.2. If G contains a unique perfect matching, then BnX [ Y 2 B(M).Part 1. of Theorem 1.7 shows that the graphs of P and of Q each containperfect matchings. Consider these bipartite graphs to be binary relations: theircomposition is a binary relation R on B2nB1 that therefore contains a permutation.Now part 2. of Theorem 1.7 together with the fact that B1 and B2 are the onlycommon bases ofML andMR in B1[B2 show that the graphs of P and Q are justperfect matchings and R is a single cycle permutation. For if this were not true,R would contain a minimum length cycle of length less than jB1nB2j. This cyclewould be the composition of the binary relations of proper square submatrices ofP and Q, where these relations are each perfect matchings.We return to oriented matroid analysis. The product PQ of signed permutationmatrices P and Q is now known to represent a single cycle permutation. Let Ml



ORIENTED MATROID PAIRS 11=MLn(Bc1 \Bc2)=(B1 \B2) andMr =MRn(Bc1 \Bc2)=(B1 \B2). HenceM?l =ML=(Bc1 \ Bc2)n(B1 \ B2). The (particularly simple) oriented matroidsM?l andMr are realized by [I P ] and [Q I], respectively, interpreted as real matrices withentries in f0;+1;�1g. This is because each column of [I P ] and [Q I] has a singlenon-zero entry, so the circuits, cocircuits, etc., are completely determined by thesign patterns of these matrices.Claim 1.1. jP j jQj = �(�1)jB1nB2j:Proof. The ground set ofMl and Mr is A = (B1nB2) [ (B2nB1). Each ofMR and ML are spanned by (Bc1 \ Bc2)c = B1 [ B2. Therefore (see [2, pages133-135]) chirotope functions forMl andMr are given by�l(X) = sl0�L(X;F ) and �r(X) = sr�R(X;F );where F = B1 \B2. Here, \;" denotes concatenation of ordered sets or sequences.The si denote constant signs. A chirotope function forM?l is given by�?l (X) = sl�l(X)�(X;A):Here, X = AnX and �(X;A) is the parity of the number of inversions when Xwould be shu�ed in A so A is ordered by X;X . Let the signs sl and sr used bethose for which �?l (B2nB1) = +1 and �r(B1nB2) = +1. Therefore �?l and �r arerealized by matrices [I P ] and [Q I] respectively. Hence we havejP j jQj jIj jIj= �?l (B1nB2)�r(B2nB1)�?l (B2nB1)�r(B1nB2)= s2l �l(B2nB1)�(B1nB2; A)�l(B1nB2)�(B2nB1; A)�r(B2nB1)�r(B1nB2)= (�1)jB1nB2js2l0�L(B2nB1;F )�L(B1nB2;F )s2r�R(B2nB1;F )�R(B1nB2;F )= �L(B2)�L(B1)�R(B2)�R(B1)(�1)jB1nB2j= �(�1)jB1nB2 j:The calculation uses the fact that �(X;A)�(X;A) = (�1)jXjjXj and when jXj = jX jthis is (�1)jXj. CClaim 1.2. The number of �1 entries in P and Q together is even.Proof. The non-zero entries of PQ represent a permutation of jB1nB2j ele-ments with exactly one cycle. Therefore,jPQj = �(�1)jB1nB2 j(�1)number of �1 entries in P and Q.But by claim 1.1, jPQj = �(�1)jB1nB2 j: CClaim 1.3. There exist covectors C0 2 L(M?L) and D0 2 L(MR) such that� C0(a) = D0(a) 6= 0 for all a 2 A = (B1nB2) [ (B2nB1),� C0(Bc1 \Bc2) = 0 (note Bc1 \Bc2 is independent inM?L ), and� D0(B1 \B2) = 0 (note B1 \B2 is independent inMR).Proof. For e 2 B2nB1 let ce 2 L(M?L ) be the unique cocircuit for whichce(e) = + and ce(f) = 0 for all f 2 Bc1ne. Thus fce : e 2 B2nB1g is a subset of thefundamental cocircuits inM?L with respect to Bc1 2 B(M?L ). It corresponds to therows indexed by B2nB1 in the full tableau of which the tableau we showed forM?lis a submatrix.



12 SETH CHAIKENFor e 2 B1nB2 let de 2 L(MR) be the unique cocircuit for which de(e) = +and de(f) = 0 for all f 2 B1ne. These are some of the fundamental cocircuits inMR with respect to B1.Consider the bipartite graphs of P and of Q to which we applied Theorem 1.7.Form N as the union of P and the reverse of Q. We have shown that N is thecycle (v0; v1; :::; vN�1) where N = 2jB1nB2j. Call an arc in N negative if the entryin P or Q it corresponds to is �1. De�ne s : f0; : : : ; N � 1g ! f+1;�1g bys(i) = (�1)number of negative arcs in the path from v0 to vi in N .Observe that since claim 1.2 shows that number of negative arcs in N is even,s(i)s(i + 1) = � �1 if arc (vi; vi+1) is negative,+1 otherwiseis true for all subscripts 0 � i � N � 1 with i + 1 taken mod N . Let v0 2 B2nB1be arbitrary. The compositions satisfy the claim:C0 = (s(0)cv0 ) � (s(2)cv2 ) � � � � � (s(N � 2)cvN�2 )D0 = (s(1)dv1 ) � (s(3)dv3) � � � � � (s(N � 1)dvN�1 ) CClaim 1.3 says C0 and D0 satisfy the hypotheses of Theorem 1.1 withM1 =M?L ,M2 =MR, A = (B1nB2)[ (B2nB1), S = Bc1 \Bc2, R = B1 \B2 and Z = ;.Hence C = D from Theorem 1.1 is the common covector.2. Common Covector Problem Classi�cationSince rank(M?L _MR) � rank(M?L ) + rank(MR) let us distinguish orientedmatroid pairs with rank(M?L _MR) < rank(M?L ) + rank(MR) from pairs withequality here. The latter we will say have \full union rank." Theorem 1.3 saysthat pairs that do not have full union rank always have a common covector. See[25, 33] for polynomial time algorithms to compute rank(M?L _MR).We will classify common covector problems into three categories. For the �rstcategory, full union rank is impossible. For the other two categories we summarizethe properties of pairs with full union rank. Whether or not such pairs have acommon covector is the interesting question. The ground set cardinality jEj isdenoted by m.Excess Rank Sum: rank(MR) > rank(ML), in other words, rank(M?L ) +rank(MR) > m. Since m � rank(M?L _MR) Theorem 1.3 always applies.Balanced Rank Sum: rank(MR) = rank(ML), in other words, rank(M?L )+rank(MR) = m. Assume full union rank. This case includes the givenapplications to electrical networks and to W0 matrix pairs. Theorem 5.2below shows the common covector problem is as hard as deciding if a squarematrix is not sign non-singular [3] (SNS) and thus it is as hard as the digrapheven cycle problem [22], even for rather simple classes of oriented matroids.Theorem 1.6, its converse for realizable oriented matroids, and its conjecturefor all oriented matroids apply to this case.De�cient Rank Sum: rank(MR) < rank(ML), in other words, rank(M?L )+rank(MR) < m. Assume full union rank. Corollary 5.5 shows the commoncovector problem is NP-complete.



ORIENTED MATROID PAIRS 133. Realizable Oriented Matroid PairsTheorem 3.1. If realizable M?L and MR have a common non-zero covectorandML andMR have a common basis thenML andMR have a pair of oppositelydirected bases.Proof. The determinant (\bracket") of the square submatrix of Mi withcolumns B is denoted by Mi[B]. A chirotope representation �i for M(Mi) hasvalues �i(B) = �(Mi[B]). The product of real variables ge for e 2 B is denoted gB .Let G = diag(ge). Laplace's theorem and Lemma 1.1 in [4] show that� = ����� MRGM?L ����� = XB�E �(B;E)MR[B]M?L [EnB]gB = C XB�EMR[B]ML[B]gB(3.1)where C = �M?L [EnB0]=ML[B0] for an arbitrary B0 for which ML[B0] 6= 0. Thus� is not identically 0 since ML andMR have a common basis. Since � = 0 forsome positive values for the ge, two terms in (3.1) have opposite sign.Theorem 3.2. Suppose realizable ML and MR have a common basis. Thefollowing conditions are equivalent.� M?L ,MR have a common covector.� ML,M?R have a common covector.� M?L ,MR have a common vector.� ML,M?R have a common vector.Proof. By Theorems 3.1 and 1.6, the �rst two conditions are each equivalenttoML andMR having a pair of oppositely directed common bases. The other twoconditions follow because L(M?) = V(M) and L(M) = V(M?).4. Sandberg-Willson Theory and its DualConsider the problem to solve the equation AF (x)+Bx = c for x 2 Rn, whereA and B are n�n matrices, F : Rn ! Rn has the form F (x)k = fk(xk) with eachfk being a strictly monotone increasing function fromR ontoR, andAF (x) denotesthe real column vector whose kth entry is PAkifi(xi). Suppose the equation hastwo distinct solutions x and x0. Then A(F (x0) � F (x)) + B(x0 � x) = 0. Thestrict monotonicity assumption for F means �(F (x0)�F (x)) = �(x0�x) = X 6= 0.ThereforeM[A B] andM[I �I] have a common non-zero vector [X X]. Conversly,supposeM[A B] andM[I � I] have a common non-zero vector. This means somex; y 2 Rn satisfy Ay + Bx = 0 and �(x) = �(y) 6= 0. De�ne F = (fe) sofe(t) = (ye=xe)t if xe 6= 0 and fe(t) = t otherwise. With this F , AF (x) + Bx = 0has multiple solutions.These ideas were observed by Sandberg and Willson who proved that, for given(A;B), the solution x exists and is unique for each choice of functions fk and c 2 Rnis equivalent to the properties of (A;B) below.Theorem 4.1. (Willson, [41]. ) These properties of a pair of n � n matrices(A;B) are equivalent.1. jAD +Bj 6= 0 for every diagonal matrix D > 0.



14 SETH CHAIKEN2. There exists a matrix2 M 2 C(A;B) such that jM j 6= 0 and for all N 2C(A;B), jM j � jN j � 0.3. For each x 2 Rn with x 6= 0, there is an index k such that (xA)k 6= 0 or(xB)k 6= 0, and such that (xA)k(xB)k � 0.4. For each x 2 Rn with x 6= 0, there is a diagonal matrix Dx � 0 such thateither xADxAtxt > 0 or xBDxBtxt > 0 and such that xADxBtxt � 0.5. For each complementary pair (M;N ) taken from C(A;B), (that is, M =(A;B)(S0 [ (EnS)00) and N = (A;B)((EnS)0 [ S00)) we have that each realroot � of jM � �N j is non-negative.6. There exists a complementary pair (M;N ) taken from C(A;B) such thatM�1N 2 P0, in the sense of Fiedler and Pt�ak [14].7. There exists a non-singular M 2 C(A;B) and for any complementary pair(M;N ) taken from C(A;B) with M non-singular, M�1N 2 P0.A pair of matrices (A;B) that satis�es these properties is called a W0 pair, denoted(A;B) 2 W0.This section shows two conditions on the oriented matroid M = M[A B]realized by the row space of [A B] are each equivalent to (A;B) 2 W0. Eachcondition is a combinatorial property ofM together with the involution i$ (n+ i)given on the ground set E where jEj = 2n. The two conditions are known tobe equivalent for realizable oriented matroids from Theorem 3.2. One conditionreects the argument given above for uniqueness of solutions to AF (x) + Bx = c.The other pertains to a problem dual to AF (x) + Bx = c in the sense that therow space of [A B] plus a constant is an a�ne feasible set that is then furtherconstrained by strict monotone diagonal nonlinearities.Remark 4.2. A common covector ofM[A B],M[I � I] is [Z � Z] where forsome t 2 Rn, �(tA) = ��(tB) = Z. A common vector of M[A B];M[I � I] is[W W ] where there exist x; y 2 Rn such that Ax+ By = 0 and W = �(x) = �(y).Theorem 4.3. For a pair of n � n matrices (A;B), the following conditionsare equivalent.1. (A;B) 2 W0 in the sense of Theorem 4.1, e.g., jAD+Bj 6= 0 for all positivediagonal D, etc.2. rankM[A B] = n and L[A B] \L[I � I] = f0g:3. rankM[A B] = n and V[A B] \ V[I � I] = f0g:4. (Fundamental theorem of Sandberg and Willson [36, 40]) For all functionsF : Rn ! Rn of the form F (x)k = fk(xk) where each fk is a strictly mono-tone increasing function from R onto R and for all c 2 Rn, the equationAF (x) + Bx = chas a unique solution x.5. For all functions G : Rn ! Rn of the form G(w)k = gk(wk) where eachgk is a strictly monotone increasing function from R onto R and for alld0; d00 2 Rn, the equationsut = ztA + d0; wt = ztB + d00; u = �G(w)(4.1) have a unique solution (u;w; z).2The following notation is used in [41]: C(A;B) is the collection of all 2n matrices of ordern�n that are constructed by juxtaposing for each i in the order 1, 2, : : : , n, either column Ai orBi.



ORIENTED MATROID PAIRS 15Proof. The equivalence of 1. and 4. was proved in [40, 41]. We will use it toprove 5. below.The equivalence of 1. and 2. is proved using property 3. of Theorem 4.1. The�rst part of property 3., x[A B] = [xA xB] 6= 0 for all x 6= 0 is equivalent torankM[A B] = rank[A B] = n.Suppose rankM[A B] = n and L[A B] \ L[I � I] = f0g. Then for all x 6= 0,�(xA) 6= ��(xB); so for at least one k, �(xA)(k) 6= ��(xB)(k). At least one of(xA)k and (xB)k is non-zero and (xA)k(xB)k � 0.For the converse, note that when rank[A B] = n, L[A B] \ L[I � I] = f0gis equivalent to �(xA) 6= ��(xB) for all x 6= 0. Therefore L[A B] \ L[I � I] =f0g because �(xA)(k) 6= ��(xB)(k) for the index k that satis�es property 4.1(3).Therefore, 1. and 2. are equivalent.To use Theorem 3.2 (known for realizable oriented matroids only) to prove that2. implies 3. one must show rank(M[A B]_M[I �I]) = 2n, i.e., this union matroidis free. However, if it were not, Theorem 1.3 would contradict L[A B] \ L[I � I]= f0g since rank(M[A B]) = n is assumed and rank(M[I � I]) = n.Let the rows of matrix [P Q] be a basis for the orthogonal complement of therow space L[A B]. When rank[A B] = n, [P Q] is a rank n matrix with n rows and2n columns. By oriented matroid duality principles, that M[P Q] andM[I I] =M[I � I]? have no common covector is equivalent to V[A B] \ V[I � I] = f0g:Given condition 3., Theorem 1.3 implies as before that M[P Q] _M[I I] is free.Hence Theorem 3.2 tells usM[P Q],M[I I] have no common vector, since we areworking with realizable oriented matroids. But no common vector for this pairmeans that their dualsM[A B],M[I � I] have no common covector. Therefore,condition 3. implies condition 2.Equations (4.1) are equivalent toPu� Q(�w) = Pd0t +Qd00t u = �G(w) = G1(�w)for some vector function G1 satisfying the same conditions as G.Suppose (A;B) satis�es 1. and therefore 2. Hence rankM[A B] = n and sorank(M[P � Q]) = n. By duality, L[A B] \ L[I � I] = f0g is equivalent toV[P Q] \ V[I I] = f0g. In general, the existence of common non-zero (co)vectorsof oriented matroidsM1 andM2 on ground set E is invariant under reorientationof M1 and M2 on the same subset of E. Speci�cally, V[P Q] \ V[I I] = f0g ifand only if V[P � Q] \ V[I � I] = f0g. Condition 3., applied to (P;�Q), is nowknown to imply condition 4. with (P;�Q) taking the place of (A;B). Therefore, thesolution components (ut;�wt) exist and are unique. The zt component is uniquesince rank[A B] = n. Hence condition 5. is proven for (A;B).Conversely, suppose condition 5. is true so (4.1) has a unique solution (u;w; z)for all G as speci�ed and for all d0 and d00. Then rank[A B] = n since z is unique.Therefore rank[P � Q] = n because rank[P Q] = n. The latter also shows thatfor all c there exist d0 and d00 so c = Pd0 + Qd00. So, for all c, Put � Q(�wt) = cand u = G1(�w) have a unique solution (ut;�wt). This satis�es condition 4.applied to the matrix pair (P;�Q). Thus 3. applies to (P;�Q). By reorientation,V[P Q] \ V[I I] = f0g: By duality, L[A B] \ L[I � I] = f0g: However, this andrank(M[A B]) = n is condition 2. for (A;B).



16 SETH CHAIKENCorollary 4.4. Let there be given four real n column matrices in pairs (A;B)and (P;Q), where each pair has full row rank and the row spaces are orthogonalcomplements, i.e., L[A B] = L[P Q]?. The following conditions are equivalent.1. (A;B) 2 W0.2. (P;�Q) 2 W0.3. rank(M[A B]) = n and M[A B],M[I � I] have no common covector.4. rank(M[A B]) = n and M[A B],M[I � I] have no common vector.5. rank(M[P Q]) = n andM[P Q],M[I I] have no common covector.6. rank(M[P Q]) = n andM[P Q],M[I I] have no common vector.7. For all x; y 2 Rn, Ax+ By = 0 and �(x) = �(y) implies x = y = 0; i.e., ifx 6= 0 or y 6= 0, then for some index k, xk 6= 0 or yk 6= 0, and xkyk � 0.8. For all u 2 Rn, �(utA) = ��(utB) implies u = 0 (q.v. Theorem 4.1( 3).)Remark 4.5. Case 3. of Corollary (4.4) is a specialization of L(M?L)\L(MR) =f0g and the matroidsML andMR have a common basis. However, the latter con-dition is equivalent toM?L �M0R andM[I2 �I2] having no common covector andML �M0?R andM[I2 � I2] having a common basis. Here M0R is isomorphic toMR on a disjoint copy of the ground set ofML of size m, and I2 is the order 2midentity matrix.5. Sign Solvability and Computational ComplexityA sign matrix A is by de�nition an L-matrix if every real matrix with signpattern A has all linearly independent rows. A square L-matrix is said to be signnon-singular (SNS, see [3] for a discussion of these topics.) We show that A is notan L-matrix is equivalent to a pair of rather simple linear subspaces (i.e., realizedoriented matroids) having a common covector.Lemma 5.1. Given m � n sign matrix A with no rows of zeros, let E be theset of positions ij where Aij 6= 0 and de�ne an m� jEj matrix ML and an n� jEjmatrix MR byML(i; e) = � Aij if e = ij0 otherwise and MR(j; e) = � 1 if e = ij0 otherwise:Then A is an L-matrix if and only if M(ML) and M(MR)? have no commoncovector.Proof. Let G be the diagonal matrix of gij for ij 2 E. Every real A0 with�(A0) = A can be written as A0 =MLGM tR for some real ge > 0.Suppose some linear combination of the rows of A0 were 0. Some non-zeromember of the row space x 2 L(ML) would be in L(MRG)?. The signaturesfrom the latter subspace are the covectors ofM(MR)?. Hence �(x) is a commoncovector.Conversely, suppose x 2 L(ML) and y 2 L(MR)? satisfy �(x) = �(y) 6= 0.De�ne ge = y(e)=x(e) when x(e) 6= 0 and ge = 1 otherwise. Hence G is positivediagonal, xG 2 L(MR)? and so x 2 L(MRG)?.Theorem 5.2. The problem of telling if a square sign matrix matrix A isnot SNS is polynomial time reducible to the common covector problem for ML =M(ML) and M?R =M(MR)? where ML and MR realize oriented matroids with acommon basis and whose underlying matroids are partition matroids.
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+Ra. b. c.Figure 4. a. Network for matrixA0 of Theorem 5.2, with positiveresistors E, nullator edges P and norator edges Q. Let M bethe graphic oriented matroid. Let ML = M=PnQ and MR =MnP=Q. This electric network model is well-posed for all positiveresistance values if and only ifML;M?R have no common covector.The SNS problem for 0;+1 matrices is reducible to cases of thiselectrical problem. For 0;�1 matrices, negative resistors can besimulated by (b.). When E is a cycle with 4k edges, the networkdeterminant � has exactly two terms and they have opposite sign.The Wheatstone bridge (a K4 with the nullator and norator as adisjoint pair of edges) is the case of k = 1. The case of k = 2 is(c.), � = g1g3g5g7 � g2g4g6g8.Proof. To reduce, �rst test if detA0 is identically 0 by a polynomial timebipartite matching algorithm [25, 33]. If so, A is not SNS. Otherwise, the reductiongiven in Lemma 5.1 satis�es the theorem.Remark 5.3. Matrix A0 above is the system matrix for the nullator, norator,and resistor network shown in Figure 4. Therefore the common covector problemcases from electrical applications, to determine if a network model is sometimes butnot always ill-posed [18, 19, 20], are no easier than the (non) SNS problem.Remark 5.4. Generalizing part (c) of Figure 4 gives a family of graph pairsf(GkL;GkR)g. For each member,M(GkL);M(GkR)? have a common covector. But noproper minor pair (GkL=XnY;GkR=XnY ) satis�es this property. See [32, 15].Theorem 5.5. The common covector problem for row spaces of integer matri-ces is strongly NP-complete.Proof. The NP algorithm is to guess the common covector and verify it bysolving two instances of the integer linear programming feasibility problem. The-orem 13.4 on page 320 of [33] gives an upper bound on the magnitudes of somesolution to a feasible integer linear program in terms of the magnitudes of thecoe�cients. The upper bound implies that the veri�cation can be done in timepolynomial in the number of bits needed to code the matrices.To prove the NP-hardness, use Lemma 5.1 to reduce the problem of telling ifrectangular A is not an L-matrix to the common covector problem. The formerproblem was shown to be NP-complete by Klee, Ladner and Manber in [22]. Sincethe instances from the reduction are coded with 0;�1s, the NP-completeness isstrong [16].
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