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Matrix Tree Theorem

Laplacian (Kirchhoff) matrix of a graph

Lij =


0 if i 6= j and i j

−1 if i 6= j and i j∑
1 all k i k if i = j

Theorem
Each cofactor (1 ≤ a, b ≤ # vertices) counts spanning trees, i.e.,

(−1)(a+b) det L(a, b) =
∑

T :spanning trees

1

(Many proofs and applications dating to Kirchhoff and Maxwell ...)



Matrix Tree Theorem

Laplacian (Kirchhoff) matrix of a graph with weights

Lij =


0 if i 6= j and i j

−1gij if i 6= j and gij
i j∑

1gik all k gik
i k if i = j

Theorem
Each cofactor (1 ≤ a, b ≤ # vertices) counts spanning trees, i.e.,

(−1)(a+b) det L(a, b) =
∑

T :spanning trees

1
∏
e∈T

ge

(Many proofs and applications dating to Kirchhoff and Maxwell ...)



Weighted Tutte Functions: Example and Additive Identity

M((graph) G ) =
∑

T : spanning trees
in G

∏
e∈T

ge

∏
e∈T=E\e

re =
∑
T

gT rT

For edge e: M(G ) = geM(G/e(contraction))+reM(G\e (deletion))

set of spanning trees T

×re

×ge

e e



Tutte Functions satisfy 2 Identities

(Additive (del/contr)) and Multiplicative: M(G1⊕G2) = M(G1)M(G2)

I Some Tutte functions: Chromatic polynomial, Pott’s model
partition functions, many others.

I Popular theory for graphs (graphic matroids), matroids.

I The range is usually a commutative ring.

I Tree counting has applications to physics, but are there
physical motivations for the matrix tree theorem?

I We present a Tutte function into an (anticommutative)
exterior algebra. (i.e., algebra with anticommutative
Grassmann-Berezin variables) It generalizes det L(a, b). (I
know of no other interesting non-ring examples...)

Our Tutte function’s VALUE (on an electrical network graph)
represents the solution to a classical physics problem.



Maxwell’s Rule (simplest case)

Rab = Equivalent electrical resistance between a and b.
We make p denote a “dummy” or added edge we will call a port to
demark pair a, b. We will use Rp,p instead of Rab.
Rp,p is NOT a Tutte function, but....

Rp,p = M(G/p) : M(G \ p) when resistance of each e is re : ge .

I M(G/p) enumerates spanning trees including p.

I M(G \ p) enumerates spanning trees excluding p.

I If G is not connected, “spanning trees” would be “graphic
matroid bases,” i.e., full rank trees.

I (Ratio notation “:” is used because this is valid when either
M(G/p) or M(G \ p) is zero.)



(Port voltage and current observed in lab)

Rp,p = M(G/p) : M(G\p) ≡
[

M(G \ p) −M(G/p)
] [

vp

ip

]
= 0

I The solution space, projected on the vp, ip coordinates, is the
orthogonal complement of the (1-dim) row space of matrix
[M(G \ p) −M(G/p)].

I Let’s present the row space as the 1-form
M(G \ p)p∗υ −M(G/p)p∗ι , also denoted
M(G \ p)dvp −M(G/p)dip.



Why Bother with Exterior Algebra?

M(G/p) and −M(G \ p) each satisfy the Tutte Equations (with
e 6= p) separately, so OUR 1-FORM satisfies:

ME (G ) = geME\e(G/e) + reME\e(G \ e) (p 6∈ E )

Result
This generalizes to any number of ports.
When there are p ports the objects are p−forms over R[r , g ]2p

Each of the
(2p

p

)
coefficients satisfies its own Matrix Tree Theorem.

Each coefficient, and the p−form, is a function of all graphs with
distinguished “port” edges labelled with the common set P.

The coefficients are components mijk... of an antisymmetric tensor
of rank p in a 2p dim. space.
(We will drop the distinction between k-forms and k-vectors; we
work in the exterior algebra over KS)



Applications: Case of 2 Port Edges

[
m1,1 m1,2 m1,3 m1,4

m1,1 m1,2 m1,3 m1,4

]
i1
i2
v1

v2

 = 0

ME = (m1,1i
∗
1 + m1,2i

∗
2 + m1,3v

∗
1 + m1,4v

∗
2)∧

(m2,1i
∗
1 + m2,2i

∗
2 + m2,3v

∗
1 + m2,4v

∗
2)

=

∣∣∣∣ m1,1 m1,2

m2,1 m2,2

∣∣∣∣ i∗1 ∧ i∗2 + · · ·

ME has
(4
2

)
= 6 coefficients, one for each 2× 2 minor.



Transfer resistance in terms of minors (= coeffs. of ME )

 Matrix . .
. expr. of .
. . ME




i1 = 1
i2 = 0

v1 = don’t care
v2 = −Rp2,p1

 = 0

Rp2,p1 = −v2

i1
=

ME [31]

ME [34]
=

∑
common trees in G\p1/p2 and G\p2/p1

±gT rT∑
trees in G\{p1,p2} gT rT

The general Maxwell’s rule includes the sign rule:

− if G/T looks like

p1

p2

+ if G/T looks like

p1

p2



The sign rule is intuitive

p1

p2

p1

p2

p1

p2

When unit current
flows through 

contributes
a positive
amount

to the
voltage drop
along

+

+

+

+

++

+

+

+

−−

− −
−−

−

−
−

−

−

−

−
this forest 

When 

non−port edges deleted,
the resulting 
oriented matroid minor 
is represented by:

this forest 
is contracted and the other



Application: Rayleigh Identity

Γe(G ) is equivalent conductance across e. Rayleigh: 0 ≤ ∂Γe

∂gf
=

∂ TG
TG/e

∂gf

is equivalent to

0 ≤ ∂TG

∂gf
TG/e − TG

∂TG/e

∂gf
= TG/f TG/e − TGTG/e/f

In fact,

TG/f TG/e − TGTG/e/f =
(
T+

G/e & G/f − T−
G/e & G/f

)2

T±
G/e & G/f enumerate the ± common spanning trees. Choe

(2004) proved essentially this using the vertex-based all-minors
matrix tree theorem, combinatorial cases and Jacobi’s theorem
relating the minors of a matrix to the minors of its inverse..



Proof of Rayleigh’s Identity

Let R be the transfer resistance matrix for 2 ports across e and f .
Our result implies that

det R =

∣∣∣∣ Ree Ref

Rfe Rff

∣∣∣∣ = +
TG/e/f

TG

It and better-known results tell us

Ree =
TG/e

TG
; Rff =

TG/f

TG
; Ref = Rfe =

T+
G/e & G/f − T−

G/e & G/f

TG

TG/f TG/e − TGTG/e/f =
(
T+

G/e & G/f − T−
G/e & G/f

)2
is

immediate after substituting these into

det R = ReeRff − (Ref )
2

The + follows from physical grounds if the ge , re ≥ 0. Our
characterization and proof are combinatorial.



New Rayleigh’s Identities!

The same method generates identities from∣∣∣∣∣∣
Ree Ref Reg

Rfe Rff Rfg

Rge Rgf Rgg

∣∣∣∣∣∣ = +
TG/e/f /g

TG

ETC...
(Applications???)



Result
For all graphs G (E ,P) with distinguished edge subset P,
G (E ,P) → ME (G ) is an extensor-valued function that obeys the 2
Tutte Equations (with sign corrections expressed combinatorially)
over exterior algebra, where the multiplication is anticommutative.

Plan

1. Deploy exterior algebra to realize linear (graphic) oriented
matroids, minors (deletion/contraction) and dualization.

2. Use Kirchhoff’s and Ohm’s laws to define ME for a graph.

3. Analyze (2) in terms of (1). The generically non-zero terms
are characterized by graphic matroid properties of relevent
resistor edge and port sets. The signs are characterized by
oriented matroid properties.

4. (Definition of ME (N) and our result apply to any extensor
with ground set P ∪ E , but the coefficients of ±gF rF might
not be 1.)



Extensors, Linear Subspaces and Matroids

Exterior Algebra

The exterior algebra over an |S | dimensional linear space KS can
be generated by |S | independent, anticommuting rank 1 basis
vectors S (over K ).
Multiplication is multilinear and for s1, s2 ∈ S ,
s1 ∧ s2 = s1s2 = −s2s1.

Extensor
A rank k (fully) decomposible element is the exterior product of k
linearly independent vectors, i.e., non-zero elements of KS .

Key fact

The k− dimensional linear subspaces of KS correspond one-to-one
with classes of rank-k (non-zero) extensors equivalent under
non-zero scalar (K ) multiplication.



Extensors and Subspaces of KS

r -dim row subspaces in KS of full row rank N =

S︷ ︸︸ ︷ .. .. ..
.. Nie ..
.. .. ..


correspond 1-1 to the extensors equiv., under non-zero scalar
multiplication, to the extensor:

N = (N1,s1s1 + · · ·N1,s|S|s|S |) ∧ (N2,s1s1 + · · ·N2,s|S|s|S |) ∧ · · ·
∧ (Nr ,s1s1 + · · ·Nr ,s|S|s|S |)

The subspace corresponding to extensor N

(xs1 , · · · , xs|S|) ∈ row space (N) iff

N ∧ (xs1s1 + · · ·+ xs|S|s|S |) = 0



Subspaces, (Oriented) Matroids and Extensors

The (oriented) matroids represented by the (signed) column
dependencies of matrices N and N ′ are the SAME if N and N ′

have the same row spaces.
There are a dozen or so “cryptomorphic” ways to present the
combinatorial data of a(n) (oriented) matroid.
We choose (unimodular) N to represent linearly over K the graphic
matroid, so S names the graph edges, whose ...

I Circuits = Minimal lin. dep. sets of columns = (directed)
“circles” in the graph;

I Bases = Max. independent sets of columns = Max. rank
spanning forests = Spanning trees if the graph is connected;

I We take a full row rank N, so a sequence of columns is a (±)
basis if the corresponding minor in non-zero (with ± sign).



N ’s (Oriented) Matroid Bases in Extensor Terms
When we multiply out extensor N written in terms of basis S of
KS , and collect common monomials using b1b2... = ε(σ)bσ1bσ2 ..
we can express

N =
∑
B⊂S

N[B]b1b2... =
∑
B⊂S

N[B]B

N[B] is a minor of matrix N. Each N[B]B is independent of the
order chosen for B ⊂ S . (N[B] = NB in tensor component
notation.)
N[B] 6= 0 iff B is a basis. (χ(B) = sign(N[B]) ∈ {+,−, 0} is the
chirotope of an oriented matroid.)
In fact, one oriented matroid “cryptomorphism” is a sign χ(B) for
each r−sequence B which is alternating and which satisfies the
signed basis exchange combinatorial condition implied by the
Grassmann-Plucker identity:

[a1a2 · · · ar ][b1b2 · · · br ] =
r∑

i=1

[bia2 · · · ar ][b1 · · · b̂iai · · · br ]



Deletion

Plan

I Our Tutte-like equations are algebraic.

I Given e ∈ S and an extensor N realizing a(n) (oriented)
matroid, define deletion and contraction so the result is a
well-defined extensor and can be used in algebraic expressions.
Same for dualization.

Deletion is easy.
But in a matroid, \e reduces the rank when e is an isthmus
(coloop).
We define N \ e = 0 (the zero extensor) if the rank is reduced.



Contraction

In matrix terms ...
Row-reduce to eliminate e as a column. Geometrically, intersect
the row space with a hyperplane.

Write N = N1 ∧ e + · · · . Then N/e = N1. (This is Berezin’s ∂/∂e
up to sign.)
Contraction of e reduces the rank by 1 except when e is a
(self-)loop (zero column in the matrix). In that case, N/e = 0.
NB. Zero-rank matroids (all loops) have N = 1 (multiplicative
identity).



Dualization

Linear Motivation of Duality

When an (oriented) matroid is presented by the row subspace L
within KS of a matrix with columns labelled by S , its dual matroid
is presented by the orthogonal complementary subspace L⊥.

Bases in (oriented) matroids

I A rank-k matroid can be specified by which subsets B ⊆ S
with |B| = k are (and are not) bases B (i.e., maximal
independent).

I An oriented matroid N can be specified by which ordered
k-sequences B from S are (N [B] = 0) not independent,
(N [B] = +) positive, and (N [B] = −). The chirotope
function is antisymmetric and satisfies a signed basis-exchange
axiom iff it defines an oriented matroid.



Ways to define (Oriented) Matroid Duals

Duals

I Matroid: B∗ = {S \ B|B ∈ B}
I Oriented Matroid: N ∗[B] = ±ε(BB)N [B] for

(|S | − k)− sequences B. B is an arbitrary sequence
complementary to B; order of B doesn’t matter.

I But N ∗[] and −N ∗[] define N ∗ equally well.

But we want * on extensors to be well-defined and satisfy
(N/e)∗ = (N∗ \ e).



Ground Set Orientations

We (arbitrarilly) declare with εU which parity class of permutations
of each subset of U is positive: εU(a1a2 . . .) = ε(σ)εU(aσ1aσ2 . . .)
for all permutations σ of all finite subsets A = {a1, a2, . . .}.

Motivation:
An orientation of a manifold is a consistant specification of which
ordered tangent space bases are called positive or “right handed
coordinate systems”.
So, pseudo-forms such as volume can be defined in a way that the
the volume of a sequence of vectors is positive when the sequence
is a “right handed coodinate system.”

We use a ground set orientation ε to define extensor dual so the
oriented matroid relationships between deletion, contraction and
dualization translate into identities on extensor operations.



Definition of Extensor Dual, Matroid-like Identities

Given N(S),

N⊥[X ] = N⊥ε [X ] = N[S ′]ε(S ′ X ),

where S ′ is any permutation of the elements in S \ X .

Some resulting identities have sign corrections!

(N \ X )⊥ = ε(S ′)ε(S ′X ) (N⊥/X )

(N/X )⊥ = ε(S ′)ε(S ′X )(−1)|X | (|S |−ρN) (N⊥ \ X )

(N1N2)
⊥ = ε(S1)ε(S2)ε(S1S2)(−1)ρN⊥

1 ρN2 N⊥
1 N⊥

2



Defining ME

υr (e) = ree for e ∈ E and υr (p) = pυ for p ∈ P.

ιg (e) = gee for e ∈ E and ιg (p) = pι for p ∈ P.
(1)

Given a ported extensor N(P,E ), a ground set orientation ε and
dual operator ⊥ε, parameters ge and re for each e ∈ E , and
ε-preserving functions υr and ιg defined above, let

M(N) = ιg (N) υr (N
⊥ε) and ME (N) = M(N)/E

Electricity! - When N is graphic.

Variables xe , e ∈ E represent values such that gexe is the current
through edge e and rexe is the voltage across e. Thus Ohm’s law
is expressed with resistance re : ge .
ιg (N) expresses Kirchhoff’s current law. υr (N⊥ε) expresses
Kirchhoff’s voltage law.
Contraction by E expresses eliminating the variables xe , e ∈ E
leaving p independent linear constraints on the 2p variables for the
port currents and voltage drops.



The re , ge parametrized extensor-valued function ME (N)(Pυ ·∪Pι)
of ported extensor N = N(P,E ) has the following properties:

1. Given N1(P1,E1) and N2(P2,E2) with E = E1 ·∪ E2 and
P = P1 ·∪P2,

ME (N1 N2)(P,E ) =

ε(P1P2E )ε(P1E1)ε(P2E2) ME1(N1) ME2(N2).

2. If e ∈ E and E ′ = E \ e then

ME (N) = ε(PE )ε(PE ′)
(
geME ′(N/e) + reME ′(N \ e)

)
.



3 Let E = ∅. The Plücker coordinates of M∅(N)(Pι ·∪Pυ)
satisfy

M∅(N)[IιVυ] = M[IιVυ] = ε(V V ) N[I ]N[V ].

for all I ⊆ P and V ⊆ P.
(NB: Each N[A]N[B] 6= 0 iff A and B are common bases in
the matroid represented by N.
For graphic and other unimodular oriented matroids, each
N[] = ±1 or 0. )

4 ME (0) = 0.



Corollary

Let (N/A|P) = N/A \ (E \ A) be the extensor obtained by
contracting A ⊆ E and deleting the rest of E , leaving an extensor
with ground set P.
ME (N/A|P) with E = ∅ is a result of applying the reductions in
the additive identity repeatedly until there are no more e ∈ E .

ε(PE )ME (N) = ε(P)
∑

A ⊆ E : ρNA = |A|,
ρN− ρ(N/A|P)− ρNA = 0

M∅(N/A|P)gArA.

The signs cancel in a telescoping product.
When N is graphic, each non-zero M∅(N/A|P) represents the
behavior of an electrical network with ports only!
Intuitively, the behavior of the resistor network is the exterior sum
of behaviors of certain networks obtained by contracting a forest F
of resistors and deleting E \ F , weighted by gF rE\F .



1. The generic Matrix Tree Theorem: Given N = N(P,E ), and
sequences I ⊆ P, V ⊆ P, and V = P \ V ,

ε(V V )ε(PE )ME (N)[IιVυ] = ε(P)
∑
A⊆E

N[IA]N[VA]gArA.

The only non-zero terms in this sum are those for which both
A ·∪ I and A ·∪V are bases in the matroid of N.

2. ε(PE )Mε
E (±N)[Pι] enumerates the bases of N (N/P),

assuming P is independent in the matroid N (N), by

ε(PE )Mε
E (±N)[Pι] =

∑
B⊆E

gB rBN2[BP],

3. Mε
E (±N)[Q] is constant under sign change of ±N, and is

alternating in E , ε and Q.

4. ε(PE )Mε
E (±N)[Q] is constant under sign change of ±N and

under changes or reorderings of ε or E ; it is alternating in P
and in Q.



1. The generic Matrix Tree Theorem: Given N = N(P,E ), and
sequences I ⊆ P, V ⊆ P, and V = P \ V ,

ε(V V )ε(PE )ME (N)[IιVυ] = ε(P)
∑
A⊆E

N[IA]N[VA]gArA.

The only non-zero terms in this sum are those for which both
A ·∪ I and A ·∪V are bases in the matroid of N.

2. ε(PE )Mε
E (±N)[Pι] enumerates the bases of N (N/P),

assuming P is independent in the matroid N (N), by

ε(PE )Mε
E (±N)[Pι] =

∑
B⊆E

gB rBN2[BP],

3. Mε
E (±N)[Q] is constant under sign change of ±N, and is

alternating in E , ε and Q.

4. ε(PE )Mε
E (±N)[Q] is constant under sign change of ±N and

under changes or reorderings of ε or E ; it is alternating in P
and in Q.



1. The generic Matrix Tree Theorem: Given N = N(P,E ), and
sequences I ⊆ P, V ⊆ P, and V = P \ V ,

ε(V V )ε(PE )ME (N)[IιVυ] = ε(P)
∑
A⊆E

N[IA]N[VA]gArA.

The only non-zero terms in this sum are those for which both
A ·∪ I and A ·∪V are bases in the matroid of N.

2. ε(PE )Mε
E (±N)[Pι] enumerates the bases of N (N/P),

assuming P is independent in the matroid N (N), by

ε(PE )Mε
E (±N)[Pι] =

∑
B⊆E

gB rBN2[BP],

3. Mε
E (±N)[Q] is constant under sign change of ±N, and is

alternating in E , ε and Q.

4. ε(PE )Mε
E (±N)[Q] is constant under sign change of ±N and

under changes or reorderings of ε or E ; it is alternating in P
and in Q.



2 Grassmann variables for each edge

Instead of Smith’s “protovoltage” xe for each edge, we could have
used voltage xe and current xe . Ohm’s law is (gexe − rexe) = 0.

M(G ) with Ohm’s Law Explicit:

Current Laws: N =

ρ(G)∧
i=0

(
∑
E

Ni ,exe +
∑
P

Ni ,ppι)

Voltage Laws: N⊥ =

ρ∗(G)∧
i=0

(
∑
E

N⊥
i ,exe +

∑
P

N⊥
i ,ppυ)

MOhm’s law explicit = NN⊥
∧
e∈E

(gexe − rexe)



Extracting Tree sums

Let φφ =
∧

p∈P pυpι
∧

e∈E xexe

For 2 sequences of port names I and V , |I |+ |V | = |P| (not
necessarily disjoint), the coefficient (Plucker coordinate, tensor
component) named by IιVυ in ME is given by the
Grassmann-Berezin integral:

±
∫
D(φφ)ICιV

C
υMOhm’s..

where IC = P \ I and V C = P \ V .

I Each of these enumerates, with homogenous ±
∏

r and
∏

g
weights, certain trees. Each is a full-row minor (determinant)
in the matrix of M.

I When I ,V partition P, all signs are the same.

I Each satisfies Tutte’s deletion/contraction and direct sum
identities.



A Grassmann Polynomial that satisfies anticommutative
Tutte equations

Berezin Integral Notation∫
dx1dx2...F denotes

∂

∂x1
◦ ∂

∂x2
◦ · · ·F

(When the signs are corrected properly) the integrand obtained by
“integrating out” the variables xe and xe satisfies Tutte’s
equations as a polynomial in Grassmann-Berezin variables.



Example

p3

e1

e4

e3e2
p1 p2

N =

p1 p2 p3 e1 e2 e3 e4 −1 0 +1 +1 +1 0 0
0 +1 −1 −1 0 +1 0
−1 −1 +1 +1 0 0 +1



N =
(−p1 + p3 + e1 + e2)·
(p2 − p3 − e1 + e3)·

(−p1 − p2 + p3 + e1 + e4)



Next, we write one totally unimodular matrix N⊥ for the canonical
dual. We have checked that the sign was chosen properly.

N⊥ =

p1 p2 p3 e1 e2 e3 e4
0 0 +1 −1 0 0 0

+1 +1 +1 0 0 0 +1
0 +1 +1 0 −1 0 0

+1 0 +1 0 0 +1 0


We abbreviate labels pι1 and pυ1 by i1 and v1, etc.



M(N) =

i1 i2 i3 v1 v2 v3 e1 e2 e3 e4

−1 0 +1 0 0 0 g1 g2 0 0
0 +1 −1 0 0 0 −g1 0 g3 0
−1 −1 +1 0 0 0 g1 0 0 g4

0 0 0 0 0 +1 −r1 0 0 0
0 0 0 +1 +1 +1 0 0 0 r4
0 0 0 0 +1 +1 0 −r2 0 0
0 0 0 +1 0 +1 0 0 r3 0





We calculate ME (N) by doing ring operations on rows to eliminate
all but one non-zero entry in each E column in M(N). The result
is that

g1g2g3g4r
6
1 r2r3r4M(N)

is equal to the following extensor in matrix form:

i1 i2 i3 v1 v2 v3 e1 e2 e3 e4

−r1r2 0 r1r2 0 g2r1 g1r2 + g2r1 0 0 0 0
0 r1r3 −r1r3 −g3r1 0 −g1r3 − g3r1 0 0 0 0

−r1r4 −r1r4 r1r4 −g4r1 −g4r1 g1r4 − g4r1 0 0 0 0
0 0 0 0 0 g1 −g1r1 0 0 0
0 0 0 g4r1 g4r1 g4r1 0 0 0 g4r1r4
0 0 0 0 g2r1 g2r1 0 −g2r1r2 0 0
0 0 0 g3r1 0 g3r1 0 0 g3r1r3 0





After some cancellation, we can read off the answer from the 3× 6
upper left submatrix, which is a matrix presentation of the extensor
r2
1ME (N):

i1 i2 i3 v1 v2 v3 −r1r2 0 r1r2 0 g2r1 g1r2 + g2r1
0 r1r3 −r1r3 −g3r1 0 −g1r3 − g3r1

−r1r4 −r1r4 r1r4 −g4r1 −g4r1 g1r4 − g4r1


One can notice that every order 3 minor is a multiple of r2

1 .



Example graph (again)

p3

e1

e4

e3e2
p1 p2



Here are examples of Plücker coordinates, which can be calculated
from the above matrix as order 3 minors divided by r2

1 .

ME (N)[v1v2v3] = g1g2g3r4 + g1g2g4r3 + g1g3g4r2 + g2g3g4r1

ME (N)[i1v2v3] = (g1r3 + g3r1)(g2r4 + g4r2)

ME (N)[v1i1v3] = −g1g4r2r3 + g2g3r1r4

Observe ME (N)[v1v2v3] is the basis enumerator for N (N) \ P.

Graph Minor Extensor Minor Term in ME (N)[v1i1v3]

p1

p3

p2

N/{e1, e4}|P −g1g4r2r3

p2p1
p3 N/{e2, e3}|P +g2g3r1r4
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