An Extensor Tree Theorem and a Tutte Identity for Graphs with Distinguished Port Edges

> Seth Chaiken CS Department Univ. at Albany State Univ. of New York¹, USA

April 9, 2008 Newton Institute, Cambridge, UK

(Tech report on arXiv/Math)

¹Ex Governor Elliot Spitzer

Matrix Tree Theorem

Tutte Functions

Expressing Maxwell's Rule with Extensors

Applications

Plan and Machinery

Ground Set Orientation and Duals

Main Definition and Result

Corollaries

Framework in terms of Grassmann-Berezin Integrals

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Matrix Tree Theorem

Laplacian (Kirchhoff) matrix of a graph

$$L_{ij} = \begin{cases} 0 & \text{if } i \neq j \text{ and } \overbrace{j}^{i} - - - - \overbrace{j}^{i} - - - - \overbrace{j}^{i} \\ -1 & \text{if } i \neq j \text{ and } \overbrace{j}^{i} \\ \sum 1 & \text{all } k \xrightarrow{(i)} \hline k \text{ if } i = j \end{cases}$$

Theorem

Each cofactor (1 $\leq a, b \leq \#$ vertices) counts spanning trees, i.e.,

$$(-1)^{(a+b)} \det L(\overline{a}, \overline{b}) = \sum_{T: \text{spanning trees}} 1$$

(Many proofs and applications dating to Kirchhoff and Maxwell ...)

Matrix Tree Theorem

Laplacian (Kirchhoff) matrix of a graph with weights

$$L_{ij} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i) = -\frac{j}{2} - \frac{j}{2} -$$

Theorem

Each cofactor ($1 \le a, b \le \#$ vertices) counts spanning trees, i.e.,

$$(-1)^{(a+b)} \det L(\overline{a}, \overline{b}) = \sum_{T: \text{spanning trees}} 1 \prod_{e \in T} g_e$$

(Many proofs and applications dating to Kirchhoff and Maxwell ...)

Weighted Tutte Functions: Example and Additive Identity

$$M((\text{graph}) \ G) = \sum_{\substack{T : \text{ spanning trees} \\ \text{ in } G}} \prod_{e \in T} g_e \prod_{e \in \overline{T} = E \setminus e} r_e = \sum_{T} g_T r_{\overline{T}}$$

For edge e: $M(G) = g_e M(G/e(\text{contraction})) + r_e M(G \setminus e \text{ (deletion)})$

Tutte Functions satisfy 2 Identities

(Additive (del/contr)) and Multiplicative: $M(G_1 \oplus G_2) = M(G_1)M(G_2)$

- Some Tutte functions: Chromatic polynomial, Pott's model partition functions, many others.
- Popular theory for graphs (graphic matroids), matroids.
- The range is usually a commutative ring.
- Tree counting has applications to physics, but are there physical motivations for the matrix tree theorem?
- ▶ We present a Tutte function into an (anticommutative) exterior algebra. (i.e., algebra with anticommutative Grassmann-Berezin variables) It generalizes det L(ā, b). (I know of no other interesting non-ring examples...)

Our Tutte function's VALUE (on an electrical network graph) represents the solution to a classical physics problem,

Maxwell's Rule (simplest case)

 $R_{ab} =$ Equivalent electrical resistance between *a* and *b*. We make *p* denote a "dummy" or added edge we will call a port to demark pair *a*, *b*. We will use $R_{p,p}$ instead of R_{ab} . $R_{p,p}$ is NOT a Tutte function, but....

 $R_{p,p} = M(G/p) : M(G \setminus p)$ when resistance of each e is $r_e : g_e$.

- M(G/p) enumerates spanning trees including p.
- $M(G \setminus p)$ enumerates spanning trees excluding p.
- If G is not connected, "spanning trees" would be "graphic matroid bases," i.e., full rank trees.
- ► (Ratio notation ":" is used because this is valid when either M(G/p) or M(G \ p) is zero.)

(Port voltage and current observed in lab)

$$R_{\rho,\rho} = M(G/p) : M(G \setminus p) \equiv \begin{bmatrix} M(G \setminus p) & -M(G/p) \end{bmatrix} \begin{bmatrix} v_p \\ i_p \end{bmatrix} = 0$$

The solution space, projected on the v_p, i_p coordinates, is the orthogonal complement of the (1-dim) row space of matrix [M(G \ p) − M(G/p)].

► Let's present the row space as the 1-form $M(G \setminus p)\mathbf{p}_{v}^{*} - M(G/p)\mathbf{p}_{\iota}^{*}$, also denoted $M(G \setminus p)dv_{p} - M(G/p)di_{p}$.

Why Bother with Exterior Algebra?

M(G/p) and $-M(G \setminus p)$ each satisfy the Tutte Equations (with $e \neq p$) separately, so OUR 1-FORM satisfies:

 $M_E(G) = g_e M_{E \setminus e}(G/e) + r_e M_{E \setminus e}(G \setminus e) \ (p \notin E)$

Result

This generalizes to any number of ports.

When there are p ports the objects are p-forms over $\mathbb{R}[r,g]^{2p}$ Each of the $\binom{2p}{p}$ coefficients satisfies its own Matrix Tree Theorem. Each coefficient, and the p-form, is a function of all graphs with distinguished "port" edges labelled with the common set P.

The coefficients are components $m_{ijk...}$ of an antisymmetric tensor of rank p in a 2p dim. space.

(We will drop the distinction between k-forms and k-vectors; we work in the exterior algebra over KS)

Applications: Case of 2 Port Edges

$$\begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ v_1 \\ v_2 \end{bmatrix} = 0$$

$$M_E = (m_{1,1}\mathbf{i}_1^* + m_{1,2}\mathbf{i}_2^* + m_{1,3}\mathbf{v}_1^* + m_{1,4}\mathbf{v}_2^*) \land (m_{2,1}\mathbf{i}_1^* + m_{2,2}\mathbf{i}_2^* + m_{2,3}\mathbf{v}_1^* + m_{2,4}\mathbf{v}_2^*) = \begin{vmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{vmatrix} i_1^* \land i_2^* + \cdots$$

 M_E has $\binom{4}{2} = 6$ coefficients, one for each 2 \times 2 minor.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Transfer resistance in terms of minors (= coeffs. of M_E)

$$\begin{bmatrix} Matrix & . & . \\ . & expr. of & . \\ . & . & M_E \end{bmatrix} \begin{bmatrix} i_1 = 1 \\ i_2 = 0 \\ v_1 = \text{ don't care} \\ v_2 = -R_{\rho_2, \rho_1} \end{bmatrix} = 0$$

$$R_{p_2,p_1} = -\frac{v_2}{i_1} = \frac{M_E[31]}{M_E[34]} = \frac{\sum_{\text{common trees in } G \setminus p_1/p_2 \text{ and } G \setminus p_2/p_1} \pm g_T r_{\overline{T}}}{\sum_{\text{trees in } G \setminus \{p_1,p_2\}} g_T r_{\overline{T}}}$$

The general Maxwell's rule includes the sign rule:

- if
$$G/T$$
 looks like
+ if G/T looks like

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The sign rule is intuitive

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Application: Rayleigh Identity

 $\Gamma_e(G)$ is equivalent conductance across *e*. Rayleigh: $0 \leq \frac{\partial \Gamma_e}{\partial \sigma_c} = \frac{\partial \frac{\Gamma_G}{T_{G/e}}}{\partial \sigma_c}$

is equivalent to

$$0 \leq \frac{\partial T_G}{\partial g_f} T_{G/e} - T_G \frac{\partial T_{G/e}}{\partial g_f} = T_{G/f} T_{G/e} - T_G T_{G/e/f}$$

In fact.

$$T_{G/f}T_{G/e} - T_{G}T_{G/e/f} = \left(T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}\right)^{2}$$

 $T^{\pm}_{G/e \& G/f}$ enumerate the \pm common spanning trees. Choe (2004) proved essentially this using the vertex-based all-minors matrix tree theorem, combinatorial cases and Jacobi's theorem relating the minors of a matrix to the minors of its inverse..

Proof of Rayleigh's Identity

Let R be the transfer resistance matrix for 2 ports across e and f. Our result implies that

$$\det R = \left| \begin{array}{c} R_{ee} & R_{ef} \\ R_{fe} & R_{ff} \end{array} \right| = + \frac{T_{G/e/f}}{T_G}$$

It and better-known results tell us

$$R_{ee} = \frac{T_{G/e}}{T_G}; \quad R_{ff} = \frac{T_{G/f}}{T_G}; \quad R_{ef} = R_{fe} = \frac{T_{G/e \& G/f}^+ - T_{G/e \& G/f}^-}{T_G}$$

 $T_{G/f}T_{G/e} - T_GT_{G/e/f} = \left(T_{G/e \& G/f}^+ - T_{G/e \& G/f}^-\right)$ is immediate after substituting these into

$$\det R = R_{ee}R_{ff} - (R_{ef})^2$$

The + follows from physical grounds if the $g_e, r_e \ge 0$. Our characterization and proof are combinatorial.

New Rayleigh's Identities!

The same method generates identities from

$$\begin{vmatrix} R_{ee} & R_{ef} & R_{eg} \\ R_{fe} & R_{ff} & R_{fg} \\ R_{ge} & R_{gf} & R_{gg} \end{vmatrix} = + \frac{T_{G/e/f/g}}{T_G}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ETC... (Applications???)

Result

For all graphs G(E, P) with distinguished edge subset P, $G(E, P) \rightarrow M_E(G)$ is an extensor-valued function that obeys the 2 Tutte Equations (with sign corrections expressed combinatorially) over exterior algebra, where the multiplication is anticommutative.

Plan

- 1. Deploy exterior algebra to realize linear (graphic) oriented matroids, minors (deletion/contraction) and dualization.
- 2. Use Kirchhoff's and Ohm's laws to define M_E for a graph.
- 3. Analyze (2) in terms of (1). The generically non-zero terms are characterized by graphic matroid properties of relevent resistor edge and port sets. The signs are characterized by oriented matroid properties.
- 4. (Definition of $M_E(N)$ and our result apply to any extensor with ground set $P \cup E$, but the coefficients of $\pm g_F r_F$ might not be 1.)

Extensors, Linear Subspaces and Matroids

Exterior Algebra

The exterior algebra over an |S| dimensional linear space KS can be generated by |S| independent, anticommuting rank 1 basis vectors S (over K). Multiplication is multilinear and for $s_1, s_2 \in S$, $s_1 \wedge s_2 = s_1 s_2 = -s_2 s_1$.

Extensor

A rank k (fully) decomposible element is the exterior product of k linearly independent vectors, i.e., non-zero elements of KS.

Key fact

The k- dimensional linear subspaces of KS correspond one-to-one with classes of rank-k (non-zero) extensors equivalent under non-zero scalar (K) multiplication.

Extensors and Subspaces of KS

r-dim row subspaces in *KS* of full row rank
$$N = \begin{bmatrix} S \\ ... N_{ie} \\ ... N_{ie} \\ ... \\$$

correspond 1-1 to the extensors equiv., under non-zero scalar multiplication, to the extensor:

$$\begin{split} \mathbf{N} &= (N_{1,s_1}\mathbf{s}_1 + \cdots N_{1,s_{|S|}}\mathbf{s}_{|S|}) \land (N_{2,s_1}\mathbf{s}_1 + \cdots N_{2,s_{|S|}}\mathbf{s}_{|S|}) \land \cdots \\ &\land (N_{r,s_1}\mathbf{s}_1 + \cdots N_{r,s_{|S|}}\mathbf{s}_{|S|}) \end{split}$$

The subspace corresponding to extensor \mathbf{N}

$$(x_{s_1}, \cdots, x_{s_{|S|}}) \in \text{ row space } (N) \text{ iff}$$

 $\mathbf{N} \land (x_{s_1}\mathbf{s}_1 + \cdots + x_{s_{|S|}}\mathbf{s}_{|S|}) = 0$

Subspaces, (Oriented) Matroids and Extensors

The (oriented) matroids represented by the (signed) column dependencies of matrices N and N' are the SAME if N and N' have the same row spaces.

There are a dozen or so "cryptomorphic" ways to present the combinatorial data of a(n) (oriented) matroid.

We choose (unimodular) N to represent linearly over K the graphic matroid, so S names the graph edges, whose ...

- Circuits = Minimal lin. dep. sets of columns = (directed) "circles" in the graph;
- Bases = Max. independent sets of columns = Max. rank spanning forests = Spanning trees if the graph is connected;
- ▶ We take a full row rank N, so a sequence of columns is a (±) basis if the corresponding minor in non-zero (with ± sign).

N's (Oriented) Matroid Bases in Extensor Terms

When we multiply out extensor **N** written in terms of basis *S* of *KS*, and collect common monomials using $\mathbf{b}_1 \mathbf{b}_2 \dots = \epsilon(\sigma) \mathbf{b}_{\sigma_1} \mathbf{b}_{\sigma_2} \dots$ we can express

$$\mathbf{N} = \sum_{B \subset S} N[B] \mathbf{b}_1 \mathbf{b}_2 \dots = \sum_{B \subset S} N[B] \mathbf{B}$$

N[B] is a minor of matrix N. Each $N[B]\mathbf{B}$ is independent of the order chosen for $B \subset S$. $(N[B] = N_B$ in tensor component notation.)

 $N[B] \neq 0$ iff B is a basis. $(\chi(B) = \text{sign}(N[B]) \in \{+, -, 0\}$ is the chirotope of an oriented matroid.)

In fact, one oriented matroid "cryptomorphism" is a sign $\chi(B)$ for each *r*-sequence *B* which is alternating and which satisfies the signed basis exchange combinatorial condition implied by the Grassmann-Plucker identity:

$$[a_1a_2\cdots a_r][b_1b_2\cdots b_r] = \sum_{i=1}^r [b_ia_2\cdots a_r][b_1\cdots \hat{b}_ia_i\cdots b_r]$$

Deletion

Plan

- Our Tutte-like equations are algebraic.
- ► Given e ∈ S and an extensor N realizing a(n) (oriented) matroid, define deletion and contraction so the result is a well-defined extensor and can be used in algebraic expressions. Same for dualization.

Deletion is easy.

But in a matroid, $\ensuremath{\setminus} e$ reduces the rank when e is an isthmus (coloop).

We define $\mathbf{N} \setminus e = \mathbf{0}$ (the zero extensor) if the rank is reduced.

Contraction

In matrix terms ...

Row-reduce to eliminate e as a column. Geometrically, intersect the row space with a hyperplane.

Write $\mathbf{N} = \mathbf{N}_1 \wedge e + \cdots$. Then $\mathbf{N}/e = \mathbf{N}_1$. (This is Berezin's $\partial/\partial e$ up to sign.)

Contraction of *e* reduces the rank by 1 except when *e* is a (self-)loop (zero column in the matrix). In that case, N/e = 0. NB. Zero-rank matroids (all loops) have N = 1 (multiplicative identity).

Dualization

Linear Motivation of Duality

When an (oriented) matroid is presented by the row subspace L within KS of a matrix with columns labelled by S, its dual matroid is presented by the orthogonal complementary subspace L^{\perp} .

Bases in (oriented) matroids

- A rank-k matroid can be specified by which subsets B ⊆ S with |B| = k are (and are not) bases B (i.e., maximal independent).
- An oriented matroid N can be specified by which ordered k-sequences B from S are (N[B] = 0) not independent, (N[B] = +) positive, and (N[B] = −). The chirotope function is antisymmetric and satisfies a signed basis-exchange axiom iff it defines an oriented matroid.

Ways to define (Oriented) Matroid Duals

Duals

- Matroid: $\mathcal{B}^* = \{S \setminus B | B \in \mathcal{B}\}$
- ► Oriented Matroid: N*[B] = ±ϵ(BB)N[B] for (|S| - k) - sequences B. B is an arbitrary sequence complementary to B; order of B doesn't matter.
- But $\mathcal{N}^*[]$ and $-\mathcal{N}^*[]$ define \mathcal{N}^* equally well.

But we want * on extensors to be well-defined and satisfy $(N/e)^* = (N^* \setminus e).$

Ground Set Orientations

We (arbitrarilly) declare with ϵ_U which parity class of permutations of each subset of U is positive: $\epsilon_U(a_1a_2...) = \epsilon(\sigma)\epsilon_U(a_{\sigma_1}a_{\sigma_2}...)$ for all permutations σ of all finite subsets $A = \{a_1, a_2, ...\}$.

Motivation:

An orientation of a manifold is a consistant specification of which ordered tangent space bases are called positive or "right handed coordinate systems".

So, pseudo-forms such as volume can be defined in a way that the the volume of a sequence of vectors is positive when the sequence is a "right handed coodinate system."

We use a ground set orientation ϵ to define extensor dual so the oriented matroid relationships between deletion, contraction and dualization translate into identities on extensor operations.

Definition of Extensor Dual, Matroid-like Identities

Given N(S),

$$\mathbf{N}^{\perp}[X] = \mathbf{N}^{\perp_{\epsilon}}[X] = \mathbf{N}[S']\epsilon(S'|X),$$

where S' is any permutation of the elements in $S \setminus X$. Some resulting identities have sign corrections!

$$(\mathbf{N} \setminus X)^{\perp} = \epsilon(S')\epsilon(S'X) \quad (\mathbf{N}^{\perp}/X)$$
$$(\mathbf{N}/X)^{\perp} = \epsilon(S')\epsilon(S'X)(-1)^{|X|} (|S|-\rho\mathbf{N}) \quad (\mathbf{N}^{\perp} \setminus X)$$
$$(\mathbf{N}_{1}\mathbf{N}_{2})^{\perp} = \epsilon(S_{1})\epsilon(S_{2})\epsilon(S_{1}S_{2})(-1)^{\rho\mathbf{N}_{1}^{\perp}\rho\mathbf{N}_{2}} \quad \mathbf{N}_{1}^{\perp}\mathbf{N}_{2}^{\perp}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Defining M_E

$$v_r(\mathbf{e}) = r_e \mathbf{e} \text{ for } e \in E \text{ and } v_r(\mathbf{p}) = \mathbf{p}_v \text{ for } p \in P.$$

$$\iota_g(\mathbf{e}) = g_e \mathbf{e} \text{ for } e \in E \text{ and } \iota_g(\mathbf{p}) = \mathbf{p}_\iota \text{ for } p \in P.$$
(1)

Given a ported extensor N(P, E), a ground set orientation ϵ and dual operator \perp_{ϵ} , parameters g_e and r_e for each $e \in E$, and ϵ -preserving functions v_r and ι_g defined above, let

$$M(N) = \iota_g(N) \ \upsilon_r(N^{\perp_{\epsilon}})$$
 and $M_E(N) = M(N)/E$

Electricity! - When N is graphic.

Variables $x_e, e \in E$ represent values such that $g_e x_e$ is the current through edge e and $r_e x_e$ is the voltage across e. Thus Ohm's law is expressed with resistance $r_e : g_e$.

 $\iota_g(\mathbf{N})$ expresses Kirchhoff's current law. $\upsilon_r(\mathbf{N}^{\perp_{\epsilon}})$ expresses Kirchhoff's voltage law.

Contraction by *E* expresses eliminating the variables $x_e, e \in E$ leaving *p* independent linear constraints on the 2*p* variables for the port currents and voltage drops. The r_e, g_e parametrized extensor-valued function $\mathbf{M}_E(\mathbf{N})(P_v \cup P_\iota)$ of ported extensor $\mathbf{N} = \mathbf{N}(P, E)$ has the following properties:

1. Given $N_1(P_1, E_1)$ and $N_2(P_2, E_2)$ with $E = E_1 \cup E_2$ and $P = P_1 \cup P_2$,

$$\mathbf{M}_{E}(\mathbf{N}_{1} \ \mathbf{N}_{2})(P, E) = \\ \epsilon(P_{1}P_{2}E)\epsilon(P_{1}E_{1})\epsilon(P_{2}E_{2}) \ \mathbf{M}_{E_{1}}(\mathbf{N}_{1}) \ \mathbf{M}_{E_{2}}(\mathbf{N}_{2}).$$

2. If $e \in E$ and $E' = E \setminus e$ then

 $\mathsf{M}_{E}(\mathsf{N}) = \epsilon(PE)\epsilon(PE') \left(g_{e}\mathsf{M}_{E'}(\mathsf{N}/e) + r_{e}\mathsf{M}_{E'}(\mathsf{N}\setminus e)\right).$

3 Let $E = \emptyset$. The Plücker coordinates of $\mathbf{M}_{\emptyset}(\mathbf{N})(P_{\iota} \cup P_{\upsilon})$ satisfy

$$\mathbf{M}_{\emptyset}(\mathbf{N})[I_{\iota}V_{\upsilon}] = \mathbf{M}[I_{\iota}V_{\upsilon}] = \epsilon(\overline{V} \ V) \ \mathbf{N}[I]\mathbf{N}[\overline{V}].$$

for all $I \subseteq P$ and $V \subseteq P$. (NB: Each $\mathbf{N}[A]\mathbf{N}[B] \neq 0$ iff A and B are common bases in the matroid represented by \mathbf{N} . For graphic and other unimodular oriented matroids, each $\mathbf{N}[] = \pm 1$ or 0.)

4 $M_E(0) = 0$.

Corollary

Let $(\mathbf{N}/A|P) = \mathbf{N}/A \setminus (E \setminus A)$ be the extensor obtained by contracting $A \subseteq E$ and deleting the rest of E, leaving an extensor with ground set P. $M_E(\mathbf{N}/A|P)$ with $E = \emptyset$ is a result of applying the reductions in the additive identity repeatedly until there are no more $e \in E$.

$$\epsilon(PE)\mathbf{M}_{E}(\mathbf{N}) = \epsilon(P) \sum_{\substack{A \subseteq E : \rho_{\mathbf{N}}A = |A|, \\ \rho\mathbf{N} - \rho(\mathbf{N}/A|P) - \rho_{\mathbf{N}}A = 0}} \mathbf{M}_{\emptyset}(\mathbf{N}/A|P)g_{A}r_{\overline{A}}.$$

The signs cancel in a telescoping product. When **N** is graphic, each non-zero $\mathbf{M}_{\emptyset}(\mathbf{N}/A|P)$ represents the behavior of an electrical network with ports only! Intuitively, the behavior of the resistor network is the exterior sum of behaviors of certain networks obtained by contracting a forest F of resistors and deleting $E \setminus F$, weighted by $g_F r_{E \setminus F}$.

1. The generic Matrix Tree Theorem: Given $\mathbf{N} = \mathbf{N}(P, E)$, and sequences $I \subseteq P$, $V \subseteq P$, and $\overline{V} = P \setminus V$,

$$\epsilon(\overline{V} \ V)\epsilon(PE)\mathsf{M}_{E}(\mathsf{N})[I_{\iota}V_{\upsilon}] = \epsilon(P)\sum_{A\subseteq E}\mathsf{N}[IA]\mathsf{N}[\overline{V}A]g_{A}r_{\overline{A}}.$$

The only non-zero terms in this sum are those for which both $A \cup I$ and $A \cup \overline{V}$ are bases in the matroid of **N**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. The generic Matrix Tree Theorem: Given $\mathbf{N} = \mathbf{N}(P, E)$, and sequences $I \subseteq P$, $V \subseteq P$, and $\overline{V} = P \setminus V$,

$$\epsilon(\overline{V} \ V)\epsilon(PE)\mathsf{M}_{E}(\mathsf{N})[I_{\iota}V_{\upsilon}] = \epsilon(P)\sum_{A\subseteq E}\mathsf{N}[IA]\mathsf{N}[\overline{V}A]g_{A}r_{\overline{A}}.$$

The only non-zero terms in this sum are those for which both $A \cup I$ and $A \cup \overline{V}$ are bases in the matroid of **N**.

2. $\epsilon(PE)\mathbf{M}_{E}^{\epsilon}(\pm \mathbf{N})[P_{\iota}]$ enumerates the bases of $\mathcal{N}(\mathbf{N}/P)$, assuming P is independent in the matroid $\mathcal{N}(\mathbf{N})$, by

$$\epsilon(PE)\mathbf{M}_{E}^{\epsilon}(\pm\mathbf{N})[P_{\iota}] = \sum_{B\subseteq E} g_{B}r_{\overline{B}}\mathbf{N}^{2}[BP],$$

1. The generic Matrix Tree Theorem: Given $\mathbf{N} = \mathbf{N}(P, E)$, and sequences $I \subseteq P$, $V \subseteq P$, and $\overline{V} = P \setminus V$,

$$\epsilon(\overline{V} \ V)\epsilon(PE)\mathsf{M}_{E}(\mathsf{N})[I_{\iota}V_{\upsilon}] = \epsilon(P)\sum_{A\subseteq E}\mathsf{N}[IA]\mathsf{N}[\overline{V}A]g_{A}r_{\overline{A}}.$$

The only non-zero terms in this sum are those for which both $A \cup I$ and $A \cup \overline{V}$ are bases in the matroid of **N**.

2. $\epsilon(PE)\mathbf{M}_{E}^{\epsilon}(\pm \mathbf{N})[P_{\iota}]$ enumerates the bases of $\mathcal{N}(\mathbf{N}/P)$, assuming P is independent in the matroid $\mathcal{N}(\mathbf{N})$, by

$$\epsilon(PE)\mathbf{M}_{E}^{\epsilon}(\pm\mathbf{N})[P_{\iota}] = \sum_{B\subseteq E} g_{B}r_{\overline{B}}\mathbf{N}^{2}[BP],$$

- 3. $\mathbf{M}_{E}^{\epsilon}(\pm \mathbf{N})[Q]$ is constant under sign change of $\pm \mathbf{N}$, and is alternating in E, ϵ and Q.
- ϵ(PE)M^ϵ_E(±N)[Q] is constant under sign change of ±N and under changes or reorderings of ϵ or E; it is alternating in P and in Q.

2 Grassmann variables for each edge

Instead of Smith's "protovoltage" x_e for each edge, we could have used voltage x_e and current $\overline{x_e}$. Ohm's law is $(g_e x_e - r_e \overline{x_e}) = 0$.

M(G) with Ohm's Law Explicit:

Current Laws:
$$\mathbf{N} = \bigwedge_{i=0}^{\rho(G)} (\sum_{E} N_{i,e} \overline{\mathbf{x}}_{e} + \sum_{P} N_{i,p} \mathbf{p}_{\iota})$$

Voltage Laws: $\mathbf{N}^{\perp} = \bigwedge_{i=0}^{\rho^{*}(G)} (\sum_{E} N_{i,e}^{\perp} \mathbf{x}_{e} + \sum_{P} N_{i,p}^{\perp} \mathbf{p}_{\upsilon})$
 $\mathbf{M}_{\text{Ohm's law explicit}} = \mathbf{N} \mathbf{N}^{\perp} \bigwedge_{e \in E} (g_{e} x_{e} - r_{e} \overline{x_{e}})$

Extracting Tree sums

Let $\phi \overline{\phi} = \bigwedge_{p \in P} \mathbf{p}_v \mathbf{p}_v \bigwedge_{e \in E} \mathbf{x}_e \overline{\mathbf{x}_e}$ For 2 sequences of port names *I* and *V*, |I| + |V| = |P| (not necessarily disjoint), the coefficient (Plucker coordinate, tensor component) named by $I_v V_v$ in \mathbf{M}_E is given by the Grassmann-Berezin integral:

$$\pm \int \mathcal{D}(\phi \overline{\phi}) \mathbf{I}^{\mathsf{C}}_{\iota} \mathbf{V}^{\mathsf{C}}_{\upsilon} \mathbf{M}_{\mathsf{Ohm's..}}$$

where $I^{\mathcal{C}} = P \setminus I$ and $V^{\mathcal{C}} = P \setminus V$.

- ► Each of these enumerates, with homogenous ± ∏ r and ∏ g weights, certain trees. Each is a full-row minor (determinant) in the matrix of M.
- ▶ When *I*, *V* partition *P*, all signs are the same.
- Each satisfies Tutte's deletion/contraction and direct sum identities.

A Grassmann Polynomial that satisfies anticommutative Tutte equations

Berezin Integral Notation

$$\int dx_1 dx_2 \dots F \text{ denotes } \frac{\partial}{\partial x_1} \circ \frac{\partial}{\partial x_2} \circ \cdots F$$

(When the signs are corrected properly) the integrand obtained by "integrating out" the variables \mathbf{x}_e and $\overline{\mathbf{x}}_e$ satisfies Tutte's equations as a polynomial in Grassmann-Berezin variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

$$N = \begin{bmatrix} p_1 & p_2 & p_3 & e_1 & e_2 & e_3 & e_4 \\ -1 & 0 & +1 & +1 & +1 & 0 & 0 \\ 0 & +1 & -1 & -1 & 0 & +1 & 0 \\ -1 & -1 & +1 & +1 & 0 & 0 & +1 \end{bmatrix}$$
$$\begin{pmatrix} (-\mathbf{p}_1 + \mathbf{p}_3 + \mathbf{e}_1 + \mathbf{e}_2) \cdot \\ \mathbf{N} = \begin{pmatrix} (\mathbf{p}_2 - \mathbf{p}_3 - \mathbf{e}_1 + \mathbf{e}_3) \cdot \\ (-\mathbf{p}_1 - \mathbf{p}_2 + \mathbf{p}_3 + \mathbf{e}_1 + \mathbf{e}_4) \end{pmatrix}$$

Next, we write one totally unimodular matrix N^{\perp} for the canonical dual. We have checked that the sign was chosen properly.

$$N^{\perp} = egin{bmatrix} p_1 & p_2 & p_3 & e_1 & e_2 & e_3 & e_4 \ 0 & 0 & +1 & -1 & 0 & 0 & 0 \ +1 & +1 & +1 & 0 & 0 & 0 & +1 \ 0 & +1 & +1 & 0 & -1 & 0 & 0 \ +1 & 0 & +1 & 0 & 0 & +1 & 0 \end{bmatrix}$$

(日) (日) (日) (日) (日) (日) (日) (日)

We abbreviate labels $p_{\iota 1}$ and $p_{\upsilon 1}$ by i_1 and v_1 , etc.

$$M(N) = \begin{bmatrix} i_1 & i_2 & i_3 & v_1 & v_2 & v_3 & e_1 & e_2 & e_3 & e_4 \\ -1 & 0 & +1 & 0 & 0 & 0 & g_1 & g_2 & 0 & 0 \\ 0 & +1 & -1 & 0 & 0 & 0 & -g_1 & 0 & g_3 & 0 \\ -1 & -1 & +1 & 0 & 0 & 0 & g_1 & 0 & 0 & g_4 \\ \hline 0 & 0 & 0 & 0 & +1 & -r_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 & +1 & +1 & 0 & 0 & 0 & r_4 \\ 0 & 0 & 0 & 0 & +1 & +1 & 1 & 0 & -r_2 & 0 & 0 \\ 0 & 0 & 0 & +1 & 0 & +1 & 0 & 0 & r_3 & 0 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

We calculate $\mathbf{M}_{E}(\mathbf{N})$ by doing ring operations on rows to eliminate all but one non-zero entry in each E column in M(N). The result is that

$$g_1g_2g_3g_4r_1^6r_2r_3r_4M(N)$$

is equal to the following extensor in matrix form:

After some cancellation, we can read off the answer from the 3×6 upper left submatrix, which is a matrix presentation of the extensor $r_1^2 \mathbf{M}_E(\mathbf{N})$:

$$\begin{bmatrix} i_1 & i_2 & i_3 & v_1 & v_2 & v_3 \\ -r_1r_2 & 0 & r_1r_2 & 0 & g_2r_1 & g_1r_2 + g_2r_1 \\ 0 & r_1r_3 & -r_1r_3 & -g_3r_1 & 0 & -g_1r_3 - g_3r_1 \\ -r_1r_4 & -r_1r_4 & r_1r_4 & -g_4r_1 & g_1r_4 - g_4r_1 & \end{bmatrix}$$

(日) (日) (日) (日) (日) (日) (日) (日)

One can notice that every order 3 minor is a multiple of r_1^2 .

Example graph (again)

<ロト <回ト < 注ト < 注ト

æ

Here are examples of Plücker coordinates, which can be calculated from the above matrix as order 3 minors divided by r_1^2 .

$$\begin{aligned} \mathsf{M}_{E}(\mathsf{N})[v_{1}v_{2}v_{3}] &= g_{1}g_{2}g_{3}r_{4} + g_{1}g_{2}g_{4}r_{3} + g_{1}g_{3}g_{4}r_{2} + g_{2}g_{3}g_{4}r_{1} \\ \mathsf{M}_{E}(\mathsf{N})[i_{1}v_{2}v_{3}] &= (g_{1}r_{3} + g_{3}r_{1})(g_{2}r_{4} + g_{4}r_{2}) \\ \mathsf{M}_{E}(\mathsf{N})[v_{1}i_{1}v_{3}] &= -g_{1}g_{4}r_{2}r_{3} + g_{2}g_{3}r_{1}r_{4} \end{aligned}$$

Observe $\mathbf{M}_{E}(\mathbf{N})[v_{1}v_{2}v_{3}]$ is the basis enumerator for $\mathcal{N}(\mathbf{N}) \setminus P$.

