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Why Electricity, EE?

I Scholarly topic suggested by G.-C. Rota ≈ 1980?.

I ≈ 100 yrs. geometry-like intuition of circuit configurations
known by engineers, EE books: “Intuitive Analog Circuit
Design (2013)” [11]; “Non-linear Circuits” [5] translates to
our Oriented Matroid pair model.

I Geometry of linear spaces and oriented matroids; Tutte
decomp. w/ techniques from Barnabi, Brini and Rota’s
Exterior Calculus [1])

I Real behavior ≈ ideal plus perturbations, ideal constraints
predict intended real behavior,

I Interesting, accessible, intuitively understandable intentential
designs, applicable, easy to both simulate and build physically,
dimension ≈ 12 or 24, depending on formulation

I Analogs to chemical (and real algebraic geometry [8]),
biological, elastic/tensegrity strs. etc., random walks ...

I Merely one scalar non-linearity can cause chaos.



Kirchhoff (1847) [6] Maxwell (1891) [7] The equivalent
resistance PROBLEM IS SOLVED by the Matrix Tree
Theorem. (1) POSE! the VARIABLES or COORDINATES

ve , ie : e ∈ E

ve = V1 − V2

eV1 V2

ie

(Use voltage drops along the
flow, not potentials V1, V2.)

ordinary, resistor edge e ∈ E

(IF linear Ohm’s law use |E |
variables (geve = re ie) ELSE
use 2|E | variables.)

vp, ip : p ∈ P

vp = V1 − V2

p
ip

V1 V2

DISTINGUISHED, PORT
edge p ∈ P

The interface to an environment
is modelled with 2|P| variables.

(math, not EE sign convention)



(2) POSE: EQUATIONS. Preview the consequences.

I (KCL) (ie)e∈S is a cycle (a flow).

I (KVL) (ve)e∈S is a cocycle

I (constituitive Law) ie = ge(ve) non-linear, usually monotonic
increasing R → R.
(Sometimes use Ohm’s approximation ie = geve)

Combinatorics!
The signs {+,−, 0} have a DUAL-PAIR ORIENTED MATROID
structure (combinatorial, geometric, topological).

Engineering with amplifiers!

There’s good unique solvablility due to STRUCTURE, when the
NON-DUAL PAIR (for voltages and currents) is ALMOST DUAL:
No common covectors.



SOLUTION: Equiv. Resistance :≡ −(vp/ip) observed at a
port p by the environment EQUALS a Ratio of Spanning
Tree Enumerators! (Port edge p locates the 2 terminals.)

−(
vp

ip
) =

WTS(G/p)

WTS(G\p)
=

Matrix-Tree Det(G/p)

Matrix-Tree Det(G\p)

I “Maxwell’s rule” uses MatrTreeT on 2 DIFFERENT GRAPHS

(G/p and G\p) (Sorry, amplifiers come later.)

I Weighted Tree Sum (WTS) is a colored Tutte function:

WTS(G ′) = geWTS(G ′/e) + reWTS(G\e) for all e 6∈ P

WTS(coloop(e)) = ge

WTS(loop(e)) = re



Multiple Ports. (your stereo: 3=power plug & 2 speakers)
I One formula expresses

(2|P|
|P|
)

different Matrix Tree Theorems...

I ... long vertex-based proofs are shortened; Rayleigh
inequalities too.

I Interesting non-commutative ranges of new ORIENTED
MATROID Tutte invariants with pattern:

TF(N(P ·∪ E )) = F (N(P ·∪ E )/E )

(They distinguish DIFFERENT ORIENTATIONS of the
SAME MATROID.)

I Ported/Relative OM Tutte Poly. terms embed SPECIFIC
MINORS as variables, making proofs just with ∂T/∂xe easier.

I Formalize composition of systems [9], Tutte poly. splitting
formulas.

I Model practical devices (transistors, op amps); Label variables
to observe.

I Align EE applications with knots [3] (Ported = “Relative”)
and combinatorial geometry [12] (Ported = “Set Pointed”).



Constraint/Generator Duals and 2 Results.

I (Part 1) Technique:

Solution Space

=⋂
Constraint Subspaces

I Result: An exterior
algebraic algebraic Tutte
function: Each of its

(2|P|
|P|
)

Plücker coordinates
satisfies a Matrix Tree
Theorem.
This and det. formulas
easily prove Rayleigh
inequalities.

I (Part 2) Combine with:
Solution Space

=
Closure(Set of Generators)

I To apply: An oriented
matroid’s COVECTOR
SET encodes ALL
POSSIBLE (+,−, 0)
coordinate behaviors or δs.

I Result: An oriented
matroid pair model for
some non-linear problem
(AMPLIFIER!)
well-posedness. (How?
Sign contradictions ⇒ a
KERNEL={(0)}.)



Part 1) Use Matrix M in CONSTRAINTS MX = 0 to get...

The Tutte-like function ME () : Extensor N→ Extensor ME(N).
(STUDENT NOTE: An EXTENSOR represents the row-space of an r × s

r−rank matrix M by the
(

s
r

)
-TUPLE of the DETERMINANTS of M’s

r × r submatrices. Plücker coords.)

Given N (matrix), construct N⊥ with orthog. comp. row space.
Construct: (G = diag(ge), R = diag(re))

M =

[
N(P) 0 N(E )G

0 N⊥(P) N⊥(E )R

]
with columns labelled by PI ·∪ PV ·∪ E .
Extensor M over k[ge , re ](PV ·∪ PI ·∪ E ) is the ∧-product of M’s
row vectors. The contraction result ME (N) = M/E appears:

M = ME (N)e1e2 · · · e|E | + (· · · )

ME (N) is our Tutte function N→ Ext. Alg.



Contracting means “Eliminate variables”

ELIMINATE the variables indexed by E , leaving 2|P| variables
labelled by PI and PV . ie, CONTRACT E . Answer ME IS:

ME =
Exterior∧

JOIN over rows

[
AI ,I AI ,V

AVI
AV ,V

]
[pI1

, · · · ,pIp ; pV1
, · · · ,pVp ]t

= . . .+ Ci XXX + . . . ; Equiv. Resistance = certain Ci/Cj

All the other Ck ’s have similar interpretations.(2|P|
|P|
)

Matr. Tree Theorems: Each Ck (N) (a PRINCIPAL

MINOR of MATRIX A ABOVE!) = geCk (N/e) + reCk (N\e)
(e 6∈ P, e not (co)loop).
Each Ck is a signed weighted enumerator of forests satisfying
conditions ...



Conditions (what sets F are enumerated by one det. Ci)

The conditions ... are on the rank, nullity of F and, WHAT
ORIENTED MINOR is G/F \ (E \ F ), the minor with ONLY
PORT EDGES from contracting F and deleting the other resistor
edges, leaving the ports.
The conditions for a given Ck sometimes make all the signs the
same (eg: Ci and Cj in 1-port equivalent resistance R = Ci/Cj )
Othertimes, the oriented P-minors in the completed Tutte
decomposition of Ck determine some + and some - signs.

When [G/F |P] is

[ ]p1

p2

the term is

+gF rE\F

When [G/F |P] is

[ ]p1

p2

the term is
-gF rE\F



Application: Rayleigh Identity, “Neg. Spanning Tree
Correlation”

Γe(G ) is equivalent conductance across e. Rayleigh: 0 ≤ ∂Γp

∂gf
=
∂ TG

TG/e

∂gf

is equivalent to

0 ≤ ∂TG

∂gf
TG/e − TG

∂TG/e

∂gf
= TG/f TG/e − TG TG/e/f

In fact,

TG/f TG/e − TG TG/e/f =
(
T+

G/e & G/f − T−G/e & G/f

)2

T±G/e & G/f enumerate the ± common spanning trees.



Known Partial and Full Combinatorial Proofs

TG/f TG/e − TG TG/e/f =
(
T+

G/e & G/f − T−G/e & G/f

)2

T±G/e & G/f enumerate the ± common spanning trees.

Choe (2004) proved essentially this using the vertex-based
all-minors matrix tree theorem, combinatorial cases and Jacobi’s
theorem relating the minors of a matrix to the minors of its
inverse..

Cibulka, Hladky, Lacroix and Wagner (2008) gave a completely
bijective proof that utilizes some natural 2:2 and 2:1
correspondances.

Difficulty: Some terms on the left cancel and some reduce to terms
with coefficients ±2.



Linear Alg./Oriented Matroid Proof of Rayleigh’s Identity

Let R be the transfer resistance matrix for 2 ports across e and f .
Our result implies that

det R =

∣∣∣∣ Ree Ref

Rfe Rff

∣∣∣∣ = +
TG/e/f

TG

It and better-known results tell us

Ree =
TG/e

TG
; Rff =

TG/f

TG
; Ref = Rfe =

T+
G/e & G/f − T−G/e & G/f

TG

TG/f TG/e − TG TG/e/f =
(
T+

G/e & G/f − T−G/e & G/f

)2
is

immediate after substituting these into

det R = ReeRff − (Ref )2

The + follows from physical grounds if the ge , re ≥ 0. Our
characterization and proof are combinatorial.



New Rayleigh’s Identities!

The same method generates identities and inequalities from∣∣∣∣∣∣
Ree Ref Reg

Rfe Rff Rfg

Rge Rgf Rgg

∣∣∣∣∣∣ = +
TG/e/f /g

TG
≥ 0

when all r.., g.. ≥ 0, ETC...

(Applications???)

Might the same methods address a much harder problem: The
same inequality for forests instead of spanning trees?



(Part 2) Common Covector Model
The cycle space of GI GENERATES

the covectors of an
oriented matroid over (E ·∪ PI ).

(by PI )(signs indexed by E )

Non-linear monotone resistors CONSTRAIN SIGNS of
voltage drops (from ↓) and flows (from ↑)

TO BE EQUAL

(signs indexed by E ) (by PV )

the covectors of an
oriented matroid over E ·∪ PV .

GV

SOMETIMES EQUALS
GI

0

0

The cocycle space of GV GENERATES



Voltage and Current graphs GV , GI
“Voltage graph” GV (EE [5, 10],
NOT Gross, ...) represents KVL
v ∈ Cocycles W/ SOME ve ≡ 0

“Current graph” GI rep-
resents KCL i ∈ Cycles
WITH SOME FLOWS ≡ 0

I They are EQUAL GRAPHS for resistor networks.
I For networks with idealized amplifiers, they are not equal.

input v=i=0 always

(a wire is all one graph vertex)

output=*(wildcard)

The output voltage and current are whatever makes the input
voltage and current BOTH BE zero.

I (More) realistic amp. model = idealized amp. + resistors.

open

Gv = G\e

GI = G\e

short

Gv = G/e

GI = G/e

nullator

Gv = G/e

GI = G\e

norator

Gv = G\e

GI = G/e



“Colors” are parameters on every Tutte decomposition step

The Bollobos/Riordan/Zaslavsky [2, 13], Traldi-Ellis-Monaghan [4],
(sdc unpub) BRZ theory for well-definedness of “Relative Tutte
Polynomials for Colored Graphs” ALL GOES THROUGH (Diao
and Hetyei [3]): The 3 BRZ conditions on (colors,initial values)
GENERALIZE TO 5; activity theory WORKS TOO, when based on
linear orders on the non-port-elements.

In a nutshell
The 5 conditions =⇒ activities define an unambiguous Tutte
function from the deletion/contraction and initial value formulas.
Additional conditions =⇒ the Tutte function has a rank-nullity
expansion.
(The rank-nullity conditions are satisfied in our application.)

To specify the activity/deletion-contraction linear order
GLOBALLY is UNNECESSARY.
The Gordon/McMahon computation-tree-based activity theory also
generalizes. (sdc).
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