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Old hat: A 1-dimensional linear subspace of Rn is the line
R(a1, a2, . . . an).
New hat: Explain exterior algebra and Grassmanians in 4 words?
Hint: The rank r grade of the exterior algebra over Rn has basis
the

(n
r

)
(multilinear, alternating) products of the r coordinate

vectors ei1 ∧ ei2 ∧ . . . ∧ eid with i1 < i2 < · · · < id .



Linear subspaces are (certain exterior algebra) lines.

extensors code subspaces

The subspace of Rn spanned by independent vectors v1, v2, . . . , vd

is coded by the line R(vi1 ∧ vi2 ∧ . . . ∧ vid ).

The row space of an r × n full rank matrix M is uniquely
determined by the line of R multiples of the

(n
r

)
-tuple of

determinants M[T ] of the r × r submatrices.
(T is a sequence of r columns.)
Row operations multiply all by a common 6= 0 factor.
SPARSENESS:
The space of these lines which represent d-dim spaces is a
n(r − n)-dimensional non-linear manifold called the Grassmannian.
The

(n
d

)
coordinates are constrained by the (quadratic)

Grassmann-Plücker relations:

[s1s2...sd ][t1t2...td ] =
d∑

i=1

[ti s2...sd ][t1t2...t̂i s1...td ]

(swap column s1 with column ti for i = 1, ..., n)



A basis exchange axiom for matroids

[s1s2...sd ][t1t2...td ] =
d∑

i=1

[ti s2...sd ][t1t2...t̂i s1...td ]

Axiom
If B1 = {s1, s2, . . . , sd} and B2 = {t1, t2, . . . , td} are bases, then
there exists i , 1 ≤ i ≤ d for which both sets B1 \ si ∪ t1 =
{t1, s2, . . . , sd} and B2 \ t1 ∪ si = {t1, t2, . . . , t̂i , si , . . . , td} are
bases.

A Matroid Definition (one out of dozens)

A matroid coded by its bases is any finite collection of d-sized sets
that satisfies the above axiom.

Exercise
Discover (chirotope) axioms that define oriented matroids by
deriving the necessary conditions on the signs of the brackets
(determinants) in the Grassmann-Plücker relation.



Electrical current is a network flow

The ±1 vertex-edge incidence matrix M of a graph N fixes an
arbitrary direction of each edge.

Mi = 0⇐⇒ {ie}e∈E is a flow (of conserved current)

Let’s make M full row rank by removing redundant rows.
Let T ⊂ E be any spanning tree. T c = E \ T is a cotree.
Each {ie}e 6∈T ∈ RT c

extends to a unique flow {ie}e∈E .
How? Take the {ie}e∈T to balance the excess at each vertex.
That is: Row operations transform M to[

I 0,±1s
]

if and only if T is a spanning tree.

M represents by its columns the (graphic) matroid whose bases
are the spanning trees.



Electrical network problem: Solve for i , v ∈ Rn

MV i = 0⇐ equivalently⇒ i ∈ Row space(MI ), flows or 1-cycles.

MI v = 0⇐ equivalently⇒ v ∈ Row space(MV ), bonds or 1-cocycles.

F (i , v) = 0 locally rank n.

First two are Kirchhoff’s two laws: Combinatorial, assumed exact
in electrical network applications (geometrical for ≥ 1 dim. elastic
networks). Total rank = n.
Second are the constitutive constraints.
Linear one-port network: For all but one edge, Ohm’s law is
written

re ie − geve = 0

For the one port edge p, demarking a pair of terminal vertices,
either ip = 1 then solve for vp = equivalent resistance by say
eliminating the ve , ie for the n − 1 resistors.
or vp = 1 then solve for ip = equivalent conductance ... .



Equiv. Resistance :≡ −(vp/ip) observed at a port p

Theorem (Kirchhoff 1847, called “Maxwell’s rule”)

Let gT denote
∏

e∈T ge , etc.
G/p is G with edge p contracted (vertices identified).
G \ p is G with edge p deleted.

−(
vp

ip
) =

∑
T :spanning tree of (G/p) gT rT c∑
T :spanning tree of (G\p) gT rT c

=
Matrix-Tree Det(G/p)

Matrix-Tree Det(G\p)

It’s usually proved via the Matrix Tree Thm. on 2 DIFFERENT
GRAPHS G/p and G\p.

Theorem (Matrix Tree)

Every n − 1× n − 1 subdeterminant of a graph’s Laplacian matrix
enumerates the graph’s spanning trees.



A liney consequence of Kirchhoff’s solution

Pick any (resistor) edge e; factor the sums: (T c = E \ e \T below)

WTS(G/p)

WTS(G\p)
=

re
∑

T :spanning tree of ((G\e)/p) gT rT c + ge
∑

T :spanning tree of ((G/e)/p) gT rT c

re
∑

T :spanning tree of ((G\e)\p) gT rT c + ge
∑

T :spanning tree of ((G/e)\p) gT rT c

So, when we express our ratio by the line of all non-zero R
multiples of (WTS(G/p),WTS(G \ p)), carefully picked generators
satisfy Tutte decomposition: For “ordinary” e 6= p

(WTS(G/p),WTS(G \ p)) =

re(WTS((G \ e)/p),WTS((G \ e) \ p))+

ge(WTS((G/e)/p),WTS((G/e) \ p))



Multiport Linear electrical network problem

Edge set S = E ·∪ P. 2|E |+ 2|P| variables i , e ∈ RS . Flow
(current) and bond (voltage) eqs. have rank |E |+ |P|:

MV i = 0⇐ equivalently⇒ i ∈ Row space(MI ), cycles or flows C.

MI v = 0⇐ equivalently⇒ v ∈ Row space(MV ), cocycles C⊥.

For the |E | non-port, resistor edges,

geve = re ie

So, the linear solution space has dim. |P|.
Project solutions into port voltage and current coordinate space
R2|P|.



Our exterior algebra valued Tutte function

We’ve seen how a |P|-dim linear space of R2|P| is a line.

Theorem
(After careful definitions...) For fixed P,

each Plücker
coordinate

and

this extensor in the exte-
rior algebra, coding the row
space of the p × 2p p-port
network solution matrix

satisfy weighed Tutte recursion, when /e and \e are restricted to
e 6∈ P:

Sol(G ) = reSol(G \ e) + geSol(G/e).

This result is about a line of lines.
As as one of the linear resistance values varies from 0 to ∞, the
whole network solution ranges over a suitably defined line.



Example

p1

e4

e6

e8

e7

e2e1

e5

p2

e3



Example
|E |+ |P| simplified electrical network equations Nx = 0.
Kirchhoff’s laws apply to all cycles and cocyles with ri xei as
voltage and and gi xei as current of resistor (not port) edges. TWO
voltage vp and current ip variables are used for each port edge.

ip1 ip2 e1 e2 e3 e4 e5 e6 e7 e8 vp1 vp2

1 0 0 0 +g3 0 0 −g6 0 −g8

−1 0 −g1 0 0 0 +g5 0 +g7 0
0 +1 0 0 0 +g4 −g5 0 0 +g8

0 −1 0 −g2 0 0 0 g6 +g7 g8

+r1 0 −r3 0 0 0 0 0 1 0
0 +r2 0 −r4 0 0 0 0 0 1
−r1 0 0 +r4 +r5 0 0 0 0 0

0 −r2 +r3 0 0 +r6 0 0 0 0
−r1 +r2 0 0 0 0 +r7 0 0 0

0 0 +r3 +r4 0 0 0 +r8 0 0

Top 4 rows: Basis for cocycle space. Represents graphic matroid.
Bot 6 rows: Basis for cycle space. Represents cographic matroid.



How Tutte Decomposition Emerges

For all choices denoted by ?? of the
(2|P|
|P|
)

size |P| subsets of the

2|P| columns {ipk , vpk}, the matrices in the equation below are
square.
So the elementary multilinearity of determinants means Tutte
decompostion holds for all ei 6∈ P:

?? ei

0

1

???? ei

1

0
+ri

??

= gi

?? ei

gi

ri

??

(Technical detail: Define the Tutte function on all graphs with
distinguished or port subset P so the det. signs are consistent with
the decomposition.)



Non-linear situations (Chua et. al.)
Relaxation oscillator built with a piecewise linear resistor. The
(v , i) locus is contained in two Thevenin theorem (affine) lines.

±VT ? −

+

+

−
VM

−

+

V

V = −1
C

R
i dt

i rf

(After Chua, DeSoer and
Kuh’s 1987 textbook)

jumps

i

V

VM−VM

−VT

VT



Operational amplifier realization

Positive feedback via rA and rB implements the sometimes
negative resistance driving the capacitor.

VC = −1
C

∫
i dt +

−

i

+
V −VM < Vout

Vout < VM

−

rf

rB
rA

The inductor models
parasitic inductance
and/or amplifier de-
lay needed to resolve
the dynamics at the
impasse points.

jumps

VM

i

−VM

V

VC

VC

V

L di
dt

= VC − V >>> 0 so
so the curves separate.

impasse



Oriented matroid (= combinatorics of dependency signs)
conditions

Why must the solution of a network with monotone increasing
non-linear resistors be unique (Duffin, 1947).
Immediately for linear resistors only: The Matrix Tree Theorem
coefficients are all +1.
Suppose there are two solutions. On each resistor’s curve there are
two points joined by a positive slope line.

∆ve

∆ie
Vector ∆v and ∆i are
separately constrained by
Kirchhoff’s (linear) laws.



A better reason:(1980s EE results abstracted to OM)

I ∆v ∈ linear cycle space C, ∆i ∈ C⊥,
so ∆v ·∆i = 0.

I Monotonicity ⇔ sign(∆ie) = sign(∆ve) ∈ {0,+,−}
so ∆v ·∆i > 0 for non-zero ∆v or ∆i ,
which is a contradiction.

What if an amplifier structure makes CI and CV be
non-orthogonal? Uniquess is still guaranteed for there are no
∆i ∈ CI and ∆v ∈ CV with signs(∆i) = signs(∆v) 6= (0, ..., 0)



An amplifying subsystem simulates a negative resistance;
how uniqueness fails (Fosseprez, Hasler, Marthy, Neirynck,
Oberlin, de Werra 80-90s

i rf

rB
rA

ie = 0}
{ve = 0; except for

laws.
Kirchhoff’s

No constraints

0

+∆ +∆

+∆ +∆

i = −2∆; v = +2∆

The ideal amplifier makes CV and CI

contain a common non-zero sign pat-
tern. Positive resistance values can
be chosen (for example, all 1) so in
all 4 resistor edges, ∆v = ∆i = ∆.



Time for the ball game!



Interesting combinatorial theory emerges when quantities or
relations of linear electrical network analysis are expressed as lines
or more generally affine linear subspaces.
Our starting point is Thevenin’s and Norton’s theorems. They
conclude that the voltage vp and current ip at a pair of terminals
are characterized by the affine constraint avp + bip + c = 0.
How the load line is used...



Outline

1. Spanning trees and equivalent (linear) resistance.

2. An exterior algebra (extensor) Tutte function and
a (linear) resistance network’s behavior projected on
distinguished coordinates.

3. Rayleigh’s inequalities.

4. Tutte polynomials on pairs and (linear) amplifier networks.

5. Distinguished graph vertices and splitting formulas.



Next steps

1. One (terminal-pair) port → set of ports P.

2. 1-dim subspace of homogeneous coordinates of solutions
((vp, ip)) → p-dim subspace of k2|P|.

3. p-dim subspace → EXTENSOR (decomposible exterior
algebra, i.e., anti-symmetric tensor) with

(2p
p

)
Plucker

coordinates (determinants).



Rayleigh Identity which ⇒ inequality, “Neg. Spanning Tree
Correlation”

Γe(G ) is equivalent conductance across e. Rayleigh: 0 ≤ ∂Γp

∂gf
=
∂ TG

TG/e

∂gf

is equivalent to

0 ≤ ∂TG

∂gf
TG/e − TG

∂TG/e

∂gf
= TG/f TG/e − TG TG/e/f

Theorem

TG/f TG/e − TG TG/e/f =
(

T +
G/e & G/f − T−G/e & G/f

)2

T±G/e & G/f enumerate the ± common spanning trees.

Choe, Cibulka, Hladky, Lacroix and Wagner gave bijective proofs;
we give det. based proofs and generalizations.



Linear Alg./Oriented Matroid Proof of Rayleigh’s Identity

Let R be the transfer resistance matrix for 2 ports across e and f .
Our result implies that

det R =

∣∣∣∣ Ree Ref

Rfe Rff

∣∣∣∣ = +
TG/e/f

TG

It and better-known results tell us

Ree =
TG/e

TG
; Rff =

TG/f

TG
; Ref = Rfe =

T +
G/e & G/f − T−G/e & G/f

TG

TG/f TG/e − TG TG/e/f =
(

T +
G/e & G/f − T−G/e & G/f

)2
is

immediate after substituting these into

det R = ReeRff − (Ref )2

The + follows from physical grounds if the ge , re ≥ 0. Our
characterization and proof are combinatorial.



New Rayleigh’s Identities!

The same method generates identities and inequalities from∣∣∣∣∣∣
Ree Ref Reg

Rfe Rff Rfg

Rge Rgf Rgg

∣∣∣∣∣∣ = +
TG/e/f /g

TG
≥ 0

when all r.., g.. ≥ 0, ETC...

(Applications???)

Might the same methods address a much harder problem: The
same inequality for forests instead of spanning trees?



Pairs: The Common Covector Model
The cycle space of GI GENERATES

the covectors of an
oriented matroid over (E ·∪ PI ).

(by PI )(signs indexed by E )

Non-linear monotone resistors CONSTRAIN SIGNS of
voltage drops (from ↓) and flows (from ↑)

TO BE EQUAL

(signs indexed by E ) (by PV )

the covectors of an
oriented matroid over E ·∪ PV .

GV

SOMETIMES EQUALS
GI

0

0

The cocycle space of GV GENERATES



Voltage and Current graphs GV , GI
“Voltage graph” GV (EE [8, 13],
NOT Gross, ...) represents KVL
v ∈ Cocycles W/ SOME ve ≡ 0

“Current graph” GI rep-
resents KCL i ∈ Cycles
WITH SOME FLOWS ≡ 0

I They are EQUAL GRAPHS for resistor networks.
I For networks with idealized amplifiers, they are not equal.

input v=i=0 always

(a wire is all one graph vertex)

output=*(wildcard)

The output voltage and current are whatever makes the input
voltage and current BOTH BE zero.

I (More) realistic amp. model = idealized amp. + resistors.

open

Gv = G\e

GI = G\e

short

Gv = G/e

GI = G/e

nullator

Gv = G/e

GI = G\e

norator

Gv = G\e

GI = G/e



Distinguished graph vertices and splitting formulas

Let Q be a set of distinguished, labelled graph VERTICES,
analogous to the distinguished port edges P

Theorem
Given graph G (V ·∪Q,E ·∪ P) let T (G ,P,Q) be the Tutte
polynomial determined by restricting /e and \e to e 6∈ P AND
carrying along the partition of Q defined by the components of the
contracted edges.
Construct G Q(V ·∪Q,E ·∪ P ·∪ PQ) by adding to G a new vertex
Z and the |Q| new port edges from Z to each vertex in Q.
Then T (G ,P,Q) and T (G Q ,P ·∪ PQ) (the ported Tutte
polynomial) determine each other by substitutions.

So we can use ported Tutte polys to express splitting formulas for
Tutte polynomials of graph, beginning with Crapo [5] and
continuing with Andrzejak [1], Bonin and de Meir [4], and
Narayanan [12, 14].



etc

Extra slides...



Why Electricity, EE?

I Scholarly topic suggested by G.-C. Rota ≈ 1980?.

I ≈ 100 yrs. geometry-like intuition of circuit configurations
known by engineers, EE books: “Intuitive Analog Circuit
Design (2013)” [15]; “Non-linear Circuits” [8] translates to
our Oriented Matroid pair model.

I Geometry of linear spaces and oriented matroids; Tutte
decomp. w/ techniques from Barnabi, Brini and Rota’s
Exterior Calculus [2])

I Real behavior ≈ ideal plus perturbations, ideal constraints
predict intended real behavior,

I Interesting, accessible, intuitively understandable intentential
designs, applicable, easy to both simulate and build physically,
dimension ≈ 12 or 24, depending on formulation

I Analogs to chemical (and real algebraic geometry [11]),
biological, elastic/tensegrity strs. etc., random walks ...

I Merely one scalar non-linearity can cause chaos.



Kirchhoff (1847) [9] Maxwell (1891) [10] The equivalent
resistance PROBLEM IS SOLVED by the Matrix Tree
Theorem. (1) POSE! the VARIABLES or COORDINATES

ve , ie : e ∈ E

ve = V1 − V2

eV1 V2

ie

(Use voltage drops along the
flow, not potentials V1, V2.)

ordinary, resistor edge e ∈ E

(IF linear Ohm’s law use |E |
variables (geve = re ie) ELSE
use 2|E | variables.)

vp, ip : p ∈ P

vp = V1 − V2

p
ip

V1 V2

DISTINGUISHED, PORT
edge p ∈ P

The interface to an environment
is modelled with 2|P| variables.

(math, not EE sign convention)



(2) POSE: EQUATIONS. Preview the consequences.

I (KCL) (ie)e∈S is a cycle (a flow).

I (KVL) (ve)e∈S is a cocycle

I (constituitive Law) ie = ge(ve) non-linear, usually monotonic
increasing R → R.
(Sometimes use Ohm’s approximation ie = geve)

Combinatorics!
The signs {+,−, 0} have a DUAL-PAIR ORIENTED MATROID
structure (combinatorial, geometric, topological).

Engineering with amplifiers!

There’s good unique solvablility due to STRUCTURE, when the
NON-DUAL PAIR (for voltages and currents) is ALMOST DUAL:
No common covectors.



Multiple Ports. (your stereo: 3=power plug & 2 speakers)
I One formula expresses

(2|P|
|P|
)

different Matrix Tree Theorems...

I ... long vertex-based proofs are shortened; Rayleigh
inequalities too.

I Interesting non-commutative ranges of new ORIENTED
MATROID Tutte invariants with pattern:

TF(N(P ·∪ E )) = F (N(P ·∪ E )/E )

(They distinguish DIFFERENT ORIENTATIONS of the
SAME MATROID.)

I Ported/Relative OM Tutte Poly. terms embed SPECIFIC
MINORS as variables, making proofs just with ∂T/∂xe easier.

I Formalize composition of systems [12], Tutte poly. splitting
formulas.

I Model practical devices (transistors, op amps); Label variables
to observe.

I Align EE applications with knots [6] (Ported = “Relative”)
and combinatorial geometry [17] (Ported = “Set Pointed”).



Constraint/Generator Duals and 2 Results.

I (Part 1) Technique:

Solution Space

=⋂
Constraint Subspaces

I Result: An exterior
algebraic algebraic Tutte
function: Each of its

(2|P|
|P|
)

Plücker coordinates
satisfies a Matrix Tree
Theorem.
This and det. formulas
easily prove Rayleigh
inequalities.

I (Part 2) Combine with:
Solution Space

=
Closure(Set of Generators)

I To apply: An oriented
matroid’s COVECTOR
SET encodes ALL
POSSIBLE (+,−, 0)
coordinate behaviors or δs.

I Result: An oriented
matroid pair model for
some non-linear problem
(AMPLIFIER!)
well-posedness. (How?
Sign contradictions ⇒ a
KERNEL={(0)}.)



Part 1) Use Matrix M in CONSTRAINTS MX = 0 to get...

The Tutte-like function ME () : Extensor N→ Extensor ME(N).
(STUDENT NOTE: An EXTENSOR represents the row-space of an r × s

r−rank matrix M by the
(

s
r

)
-TUPLE of the DETERMINANTS of M’s

r × r submatrices. Plücker coords.)

Given N (matrix), construct N⊥ with orthog. comp. row space.
Construct: (G = diag(ge), R = diag(re))

M =

[
N(P) 0 N(E )G

0 N⊥(P) N⊥(E )R

]
with columns labelled by PI ·∪ PV ·∪ E .
Extensor M over k[ge , re ](PV ·∪ PI ·∪ E ) is the ∧-product of M’s
row vectors. The contraction result ME (N) = M/E appears:

M = ME (N)e1e2 · · · e|E | + (· · · )

ME (N) is our Tutte function N→ Ext. Alg.



Contracting means “Eliminate variables”

ELIMINATE the variables indexed by E , leaving 2|P| variables
labelled by PI and PV . ie, CONTRACT E . Answer ME IS:

ME =
Exterior∧

JOIN over rows

[
AI ,I AI ,V

AVI
AV ,V

]
[pI1

, · · · ,pIp ; pV1
, · · · ,pVp ]t

= . . .+ Ci XXX + . . . ; Equiv. Resistance = certain Ci/Cj

All the other Ck ’s have similar interpretations.(2|P|
|P|
)

Matr. Tree Theorems: Each Ck (N) (a PRINCIPAL

MINOR of MATRIX A ABOVE!) = geCk (N/e) + reCk (N\e)
(e 6∈ P, e not (co)loop).
Each Ck is a signed weighted enumerator of forests satisfying
conditions ...



Conditions (what sets F are enumerated by one det. Ci )

The conditions ... are on the rank, nullity of F and, WHAT
ORIENTED MINOR is G/F \ (E \ F ), the minor with ONLY
PORT EDGES from contracting F and deleting the other resistor
edges, leaving the ports.
The conditions for a given Ck sometimes make all the signs the
same (eg: Ci and Cj in 1-port equivalent resistance R = Ci/Cj )
Othertimes, the oriented P-minors in the completed Tutte
decomposition of Ck determine some + and some - signs.

When [G/F |P] is

[ ]p1

p2

the term is

+gF rE\F

When [G/F |P] is

[ ]p1

p2

the term is
-gF rE\F



Application: Rayleigh Identity, “Neg. Spanning Tree
Correlation”

Γe(G ) is equivalent conductance across e. Rayleigh: 0 ≤ ∂Γp

∂gf
=
∂ TG

TG/e

∂gf

is equivalent to

0 ≤ ∂TG

∂gf
TG/e − TG

∂TG/e

∂gf
= TG/f TG/e − TG TG/e/f

In fact,

TG/f TG/e − TG TG/e/f =
(

T +
G/e & G/f − T−G/e & G/f

)2

T±G/e & G/f enumerate the ± common spanning trees.



Known Partial and Full Combinatorial Proofs

TG/f TG/e − TG TG/e/f =
(

T +
G/e & G/f − T−G/e & G/f

)2

T±G/e & G/f enumerate the ± common spanning trees.

Choe (2004) proved essentially this using the vertex-based
all-minors matrix tree theorem, combinatorial cases and Jacobi’s
theorem relating the minors of a matrix to the minors of its
inverse..

Cibulka, Hladky, Lacroix and Wagner (2008) gave a completely
bijective proof that utilizes some natural 2:2 and 2:1
correspondances.

Difficulty: Some terms on the left cancel and some reduce to terms
with coefficients ±2.



“Colors” are parameters on every Tutte decomposition step
The Bollobos/Riordan/Zaslavsky [3, 18],
Traldi-Ellis-Monaghan [16, 7], (sdc unpub) BRZ theory for
well-definedness of “Relative Tutte Polynomials for Colored
Graphs” ALL GOES THROUGH (Diao and Hetyei [6]): The 3
BRZ conditions on (colors,initial values) GENERALIZE TO 5;
activity theory WORKS TOO, when based on linear orders on the
non-port-elements.

In a nutshell
The 5 conditions =⇒ activities define an unambiguous Tutte
function from the deletion/contraction and initial value formulas.
Additional conditions =⇒ the Tutte function has a rank-nullity
expansion.
(The rank-nullity conditions are satisfied in our application.)

To specify the activity/deletion-contraction linear order
GLOBALLY is UNNECESSARY.
The Gordon/McMahon computation-tree-based activity theory also
generalizes. (sdc).
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