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Abstract

Transcription of a 5-min “Lightning Talk” presented at the workshop
Matroids, Rigidity, and Algebraic Statistics (Mar 17 - 21, 2025) within the
Geometry of Materials, Packings and Rigid Frameworks (Jan 29 - May
2, 2025) program at the Institute for Computational and Experimental
Research in Mathematics (ICERM), Brown University.

Let N be a linear representation (i.e, matrix) of a matroid whose
ground set S includes a finite, distinguished subset P. We give function
L(N) that, unlike what we know of other Tutte functions and work like
the Hopf algebra variants of Krajewski, Moffatt and Tanasa, has values in
an anti-commutative algebra. Let deletion and contraction be limited to
e & P. Then, the values are in the exterior algebra generated by Pu [ Ps.
The construction relies on concrete minor operations to establish consis-
tent signs of the constituent terms so that, with suitable accounting for
sequential orderings of set elements, L(N) = L(N \ e) + L(N/e) in the
exterior algebra. Our construction is derived from the structure of the
equilibrium equations for linear electrical networks, and of their general-
ization to multi-dimensional elastic frameworks. Further, the construction
does not require orthogonality for the spaces that generalize spaces of fea-
sible currents and voltages, or of forces and displacements. Hence L will
be defined on equal rank pairs (No, Ng) (where originally, N, = Ng = N).
We take the Tutte identities those for Welsh and Kayibi’s linking poly-
nomial of matroid pairs. With N, # Ng, we can derive the digraph
all-minors matrix tree theorem by taking P to be the set of vertices. We
so get ratio of common basis expansion solutions for linear electrical and
other linear systems with multi-terminal amplifiers (where a voltage or
force at one place is a multiple of current or displacement at a different
place). To incorporate resistance (r.), conductance (ge), elasticity coef-
ficient, etc. parameters, we use parametrized Tutte function theory for
which L(N) = r.L(N \ e) + geL(N/e); the term for common basis B
includes HEeB Je HegBuP Te.
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We start with two matrices, N, and Ng. The matroids they represent have
the p and e symbols, each exclusively hatted or not hatted, for their ground set
elements. ... For now, think of the row spaces.

We make two exterior algebra elements, boldface N, and Ng to represent
the row spaces.

We construct function L of those N, and Ng, ... by a bilinear pairing that
performs composition ... N, bar Ng.

This bilinear operation has exterior algebra, not field or commutative ring
values.

Result 1 is that L obeys Tutte’s deletion and contraction identity: BUT only
for e type elements, not the p’s.

There is also a direct sum identity ... L of a direct sum is an exterior product,
not a commutative ring product.

We have TO CAREFULLY DEFINE the exterior algebra operations for
deletion & contraction & direct sum so the signs in the L-s we combine are
consistent.

As pure, ... or indecomposable anti-symmetric tensors, ... that is, products
of vectors, the boldface N—s represent linear subspaces of a big space generated
by matroid ground set elements and their hatted versions.

So with these designated bases, related to ground sets, we get duals of basis
vectors. The choice of column labels makes hatting consistent with dualizing.
We'll use duals later.

N, and Ng represent points in the Grassmannian, and have Plucker coor-
dinates. The Plucker coordinates are the maximal minors of the matrices. So,
the matroid bases are encoded by which Plucker coordinates are non-zero.

To construct an extensor from a matrix, I multiply each column’s boldface



symbol with its entries. Boldface N is the exterior product of the row sums.

Finally L equals the bilinear pairing which expresses an linear endomorphism
of the exterior algebra generated by the p-s.

I find it interesting that, ... in order to get a Tutte function out of this, it
seems require two special things.

We need to make the Tutte function relative.

That means we to hold some elements back from deletion or contraction, ...
so they do not all disappear from the algebra where the function value will live.

The distinguished elements we don’t delete or contract I like to call PORTS.

In applications, ports relate to variables used to specify inputs or parameters,

like how much you force or electric current you put into nodes, ... and
responses, ... like how the nodes move, or change their voltages.

But when you use L-s value, you can disregard the duality status of p el-
ements, ... so you can interchange inputs and responses ANY WAY that the
matroid of L tells you is feasible and well-posed. It encodes which combinations
of variables are independent. Electrical engineers like to solve for matrix forms
of L and them MULTIPORT LINEAR DEVICE models.

Two, it seems this exterior algebra Tutte function needs to be constructed
on two arguments, labelled o and .

We recover the basis enumerator when the two are equal and P is empty. It
is the sum of squared determinants though, not always ones.

Now for the final step.

To define the final bilinear pairing function we distinguish four kinds of
generators:
vector e’s, vector p’s and dual vector € hats and p hats.

It’s defined here WITH these rules for algebra basis monomials. Dual vectors
in the left evaluate on vectors in the right, but reverse that ... and they behave
like anticommutative coeflicients.

The N-s mix vectors and dual vectors ... they represent linear mappings.
The hatted and unhatted status of p—s and e-s are interchanged. Ny is like the
adjoint of N,. So ... the bilinear pairing is composition of mappings ... like
matrix multiplication.

Therefore ... I call this the Cauchy-Binet form. We get result 2. The
common independent set expansion here hides many common basis expansions.
One of them is the famous matrix tree theorem.



I finish with some take-homes and morals, and my name, Seth Chaiken
of Albany, NY. Three punchlines: One, ports are IM-PORT-ANT. Two, let’s
do matroid recursion on matrices in exterior algebra. Three, we find a Tutte
function there. Thank you!

1. Distinguish matroid element “ports” associated with electric or elastic
system parameter and solution variables of interest. (All vars are paired:
(voltage, current), (force, displacement), etc. One gets a pair of submodels
with dual matroids in elementary situations; not duals otherwise.)

2. Exterior algebra forms of deletion and contraction of a non-port yield a
pair of simpler systems.

3. Cancelling non-port elements with a kind of bilinear pairing yields the pa-
rameter/solution variables of interest relation, in the form of an exterior
algebra valued function of systems, that is a Tutte function (when
the minor and direct sum operations are sign-consistent).

With the suitable incidence matrix form, we get the all-minors matrix tree
theorem; but all the minors are packed into one exterior algebra object that
is a Tutte function of graphs.
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